
© NEC Corporation 2022

DLT Workshop 2023 

Bologna, Italy

Synchronization Requirements of Token Smart Contracts

Giorgia Azzurra Marson

NEC Labs Europe

Based on joint work with:

Orestis Alpos, Christian Cachin, Luca Zanolini

University of Bern



© NEC Corporation 20222

Motivation

 Decentralized applications rely on a distributed protocol emulating a shared ledger (blockchain)

𝐵𝑘



© NEC Corporation 20223

Motivation

 Decentralized applications rely on a distributed protocol emulating a shared ledger (blockchain)

 Distributed consensus (a.k.a. total-order broadcast) ensures consistency among ledgers

𝐵𝑘



© NEC Corporation 20224

Motivation

 Decentralized applications rely on a distributed protocol emulating a shared ledger (blockchain)

 Distributed consensus (a.k.a. total-order broadcast) ensures consistency among ledgers

 However, consensus is the bottleneck of blockchain speed 

𝐵𝑘

transactions 

submitted 

by users

transactions 

confirmed by 

the blockchain



© NEC Corporation 20225

Prior work [GKMPS’19]

Consensus is not necessary for decentralized cryptocurrencies (!)

[GKMPS’19] R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovic, D.A. Seredinschi: The consensus number of a cryptocurrency. PODC 2019 



© NEC Corporation 20226

Prior work [GKMPS’19]

Consensus is not necessary for decentralized cryptocurrencies (!)

Approach:

 Define AT abstraction as shared-memory object

 Analyze the synchronization power (consensus number) of AT

AT.balance
(read)

AT.transfer
(write)

AT

“Basic cryptocurrency functionality”

=

Asset Transfer (AT) object

[GKMPS’19] R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovic, D.A. Seredinschi: The consensus number of a cryptocurrency. PODC 2019 

Main result:

The consensus number of AT is 1 (range: [1,∞]).



© NEC Corporation 20227

Prior work [GKMPS’19]

Consensus is not necessary for decentralized cryptocurrencies (!)

Approach:

 Define AT abstraction as shared-memory object

 Analyze the synchronization power (consensus number) of AT

Interpretation:

 AT has weakest synchronization power

 Consensus is an overkill for basic cryptocurrency applications

 Intuitive reason: total order is not necessary to prevent double spending (causal order is enough)

AT.balance
(read)

AT.transfer
(write)

AT

“Basic cryptocurrency functionality”

=

Asset Transfer (AT) object

[GKMPS’19] R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovic, D.A. Seredinschi: The consensus number of a cryptocurrency. PODC 2019 

Main result:

The consensus number of AT is 1 (range: [1,∞]).



© NEC Corporation 20228

Consensus is not necessary for decentralized cryptocurrencies (!)

Approach:

 Define AT abstraction as shared-memory object

 Analyze the synchronization power (consensus number) of AT

AT.balance
(read)

AT.transfer
(write)

AT

“Basic cryptocurrency functionality”

=

Asset Transfer (AT) object

What about Smart Contracts?

Main result:

The consensus number of AT is 1 (range: [1,∞]).

Interpretation:

 AT has weakest synchronization power

 Consensus is an overkill for basic cryptocurrency applications

 Intuitive reason: total order is not necessary to prevent double spending (causal order is enough)



© NEC Corporation 20229

Synchronization power of Token Smart Contracts

This work [ACMZ’21]

Motivating question:

What level of synchronization is required for “popular” smart contracts?

[ACMZ’21] O. Alpos, C. Cachin, G.A. Marson, L. Zanolini: On the synchronization power of token smart contracts. ICDCS 2021 



© NEC Corporation 202210

Synchronization power of Token Smart Contracts

This work [ACMZ’21]

Motivating question:

What level of synchronization is required for “popular” smart contracts?

Approach:

 Define ERC-20 abstraction as shared object T

 Analyze the consensus number of ERC-20 object

ERC-20 token standard
(most popular fungible token in Ethereum)

[ACMZ’21] O. Alpos, C. Cachin, G.A. Marson, L. Zanolini: On the synchronization power of token smart contracts. ICDCS 2021 



© NEC Corporation 202211

Synchronization power of Token Smart Contracts

This work [ACMZ’21]

T.balance T.transfer

T

T.approve T.transferFrom

Motivating question:

What level of synchronization is required for “popular” smart contracts?

Approach:

 Define ERC-20 abstraction as shared object T

 Analyze the consensus number of ERC-20 object

ERC-20 token standard
(most popular fungible token in Ethereum)

New features compared to AT:

 Account owners can delegate approved spenders to manage asset

 Approval of spenders is dynamic (any time, arbitrary amounts)

[ACMZ’21] O. Alpos, C. Cachin, G.A. Marson, L. Zanolini: On the synchronization power of token smart contracts. ICDCS 2021 



© NEC Corporation 202212

Synchronization power of Token Smart Contracts

This work [ACMZ’21]

Main results:

The consensus number of ERC-20 token T dynamically 

changes with the contract state (𝑞):

𝐶𝑁 𝑇𝑞 = 1 + 𝑚𝑎𝑥
𝑎

{# approved spenders for account 𝑎}

T.balance T.transfer

T

T.approve T.transferFrom

Motivating question:

What level of synchronization is required for “popular” smart contracts?

Approach:

 Define ERC-20 abstraction as shared object T

 Analyze the consensus number of ERC-20 object

ERC-20 token standard
(most popular fungible token in Ethereum)

New features compared to AT:

 Account owners can delegate approved spenders to manage asset

 Approval of spenders is dynamic (any time, arbitrary amounts)

[ACMZ’21] O. Alpos, C. Cachin, G.A. Marson, L. Zanolini: On the synchronization power of token smart contracts. ICDCS 2021 



© NEC Corporation 202213

Outlook

Prior work

Synchronization power of cryptocurrency: 

Total-order broadcast (blockchain)

Currently adopted, an overkill

Causal broadcast

Sufficient (faster, asynchronous!)

𝐶𝑁 𝐴𝑇 = 1

⇒ transactions can be processed concurrently

⇒ total order is not necessary, causal broadcast 

can be used instead



© NEC Corporation 202214

Outlook

Prior work

Synchronization power of cryptocurrency: 

This work

Synchronization power of Ethereum ERC-20 token T: 

Total-order broadcast (blockchain)

Currently adopted, an overkill

Causal broadcast

Sufficient (faster, asynchronous!)

Ideally: optimally-concurrent protocol 

for “useful” smart contracts

As-concurrent-as-possible broadcast

𝐶𝑁 𝐴𝑇 = 1

⇒ transactions can be processed concurrently

⇒ total order is not necessary, causal broadcast 

can be used instead

𝐶𝑁 𝑇𝑞 = 1 + 𝑚𝑎𝑥
𝑎

{# approved spenders for account 𝑎}

⇒ transactions can be processed concurrently, if 

issued by spenders of different accounts

⇒ total order is needed only for resolving conflicts, 

causal broadcast could be used optimistically



© NEC Corporation 202215

Outlook

Prior work

Synchronization power of cryptocurrency: 

This work

Synchronization power of Ethereum ERC-20 token T: 

Total-order broadcast (blockchain)

Currently adopted, an overkill

Causal broadcast

Sufficient (faster, asynchronous!)

Ideally: optimally-concurrent protocol 

for “useful” smart contracts

As-concurrent-as-possible broadcast

𝐶𝑁 𝐴𝑇 = 1

⇒ transactions can be processed concurrently

⇒ total order is not necessary, causal broadcast 

can be used instead

𝐶𝑁 𝑇𝑞 = 1 + 𝑚𝑎𝑥
𝑎

{# approved spenders for account 𝑎}

⇒ transactions can be processed concurrently, if 

issued by spenders of different accounts

⇒ total order is needed only for resolving conflicts, 

causal broadcast could be used optimistically

Thank you for your attention 



Backup slide



© NEC Corporation 202217

Synchronization power (consensus number) of shared objects

 Intuitively: max # processes that can be synchronized “using 𝑶”

𝐶𝑁 𝑶 = 1 ⇒ 𝑶 useless for synchronization

𝐶𝑁 𝑶 = ∞ ⇒ 𝑶 can synchronize any number of processes

 Metric to compare synchronization power of shared objects

Wait-free hierarchy [Herlihy’91]

Object 𝑶

O.method-1 O.method-2
 Consensus is universal: any shared object has a wait-free 

implementation from consensus objects

 ⇒ consensus can serve as reference for the synchronization 

power of shared objects 

Consensus number of object 𝑶: 𝐶𝑁 𝑶 ∶=
𝑚𝑎𝑥 𝑛 | ∃ wait-free implementation of consensus object from 

objects of type 𝑶 and registers, in a system with 𝑛 processes.

[Herlihy’91] M. Herlihy: Wait-Free Synchronization. ACM Trans. Program. Lang. Syst. 1991


