
Toward Scalable Docker-Based Emulations of Blockchain

Networks

Diego Pennino and Maurizio Pizzonia

26 May 2023, Bologna

5th Distributed Ledger Technology Workshop

DLT 2023

Blockchain Network Testing

Performing realistic experiments for blockchain networks is notoriously hard.

The complexity:

• Large number of nodes, Simulation

• Software complexity, Emulation

• Communications among nodes (properties of transport protocols), Emulation

• Nodes are spread over the internet (delay and packet loss) Emulation

1

Blockchain Network Testing

Performing realistic experiments for blockchain networks is notoriously hard.

The complexity:

• Large number of nodes, Simulation

• Software complexity, Emulation

• Communications among nodes (properties of transport protocols), Emulation

• Nodes are spread over the internet (delay and packet loss) Emulation

1

Blockchain Network Testing

Performing realistic experiments for blockchain networks is notoriously hard.

The complexity:

• Large number of nodes,

Simulation

• Software complexity, Emulation

• Communications among nodes (properties of transport protocols), Emulation

• Nodes are spread over the internet (delay and packet loss) Emulation

1

Blockchain Network Testing

Performing realistic experiments for blockchain networks is notoriously hard.

The complexity:

• Large number of nodes,

Simulation

• Software complexity,

Emulation

• Communications among nodes (properties of transport protocols), Emulation

• Nodes are spread over the internet (delay and packet loss) Emulation

1

Blockchain Network Testing

Performing realistic experiments for blockchain networks is notoriously hard.

The complexity:

• Large number of nodes,

Simulation

• Software complexity,

Emulation

• Communications among nodes (properties of transport protocols),

Emulation

• Nodes are spread over the internet (delay and packet loss) Emulation

1

Blockchain Network Testing

Performing realistic experiments for blockchain networks is notoriously hard.

The complexity:

• Large number of nodes,

Simulation

• Software complexity,

Emulation

• Communications among nodes (properties of transport protocols),

Emulation

• Nodes are spread over the internet (delay and packet loss)

Emulation

1

Blockchain Network Testing

Performing realistic experiments for blockchain networks is notoriously hard.

The complexity:

• Large number of nodes,

Simulation

• Software complexity,

Emulation

• Communications among nodes (properties of transport protocols),

Emulation

• Nodes are spread over the internet (delay and packet loss)

Emulation

Emulation or Simulation???

1

Blockchain Network Testing

Performing realistic experiments for blockchain networks is notoriously hard.

The complexity:

• Large number of nodes, Simulation

• Software complexity,

Emulation

• Communications among nodes (properties of transport protocols),

Emulation

• Nodes are spread over the internet (delay and packet loss)

Emulation

Emulation or Simulation???

1

Blockchain Network Testing

Performing realistic experiments for blockchain networks is notoriously hard.

The complexity:

• Large number of nodes, Simulation

• Software complexity, Emulation

• Communications among nodes (properties of transport protocols), Emulation

• Nodes are spread over the internet (delay and packet loss) Emulation

Emulation or Simulation???

1

Blockchain Network Testing

Performing realistic experiments for blockchain networks is notoriously hard.

The complexity:

• Large number of nodes, Simulation

• Software complexity, Emulation

• Communications among nodes (properties of transport protocols), Emulation

• Nodes are spread over the internet (delay and packet loss) Emulation

Emulation or Simulation???

1

Emulation: two choices

2

Emulation: two choices

Local

PRO:

• Simple to handle

• Simple to modify

CONS:

• Small amount of nodes
(few hundreds)

• Fake Networks

2

Emulation: two choices

LocalDistributed

PRO:

• Simple to handle

• Simple to modify

CONS:

• Small amount of nodes
(few hundreds)

• Fake Networks

PRO:

• Huge amount of nodes

• “Real” Network
environment

CONS:

• Hard to handle

• Slow to modify

• Clusters

2

Emulation: Our Solution

LocalDistributed

PRO:

• Simple to handle

• Simple to modify

CONS:

• Small amount of nodes
(few hundreds)

• Fake Networks

PRO:

• Huge amount of nodes

• “Real” Network
environment

CONS:

• Hard to handle

• Slow to modify

• Clusters

2

Emulation: Our Solution

PRO:

• Simple to handle

• Simple to modify

CONS:

• Small amount of nodes
(few hundreds)

• Fake Networks

PRO:

• Huge amount of nodes

• “Real” Network
environment

CONS:

• Hard to handle

• Slow to modify

• Clusters

Boosted Hardware

on premises

2

Roadmap

3

The typical Docker scenario

Host

Docker
managed

linux bridge

4

1st bottleneck: Resources usage

Resources

Security limits

/etc/security/limits.conf

{
nofile number of open files

nproc maximum number of processes

Kernel parameters

/etc/sysctl.conf


pty maximum number of pseudo-terminal def:4096

gc thresh1 garbage collector ARP entries def:128

gc thresh2 garbage collector ARP entries def:512

gc thresh3 garbage collector ARP entries def:1024

5

1st bottleneck: Resources usage

Resources

Security limits

/etc/security/limits.conf

{
nofile number of open files

nproc maximum number of processes

Kernel parameters

/etc/sysctl.conf


pty maximum number of pseudo-terminal def:4096

gc thresh1 garbage collector ARP entries def:128

gc thresh2 garbage collector ARP entries def:512

gc thresh3 garbage collector ARP entries def:1024

5

1st bottleneck: Resources usage

Resources

Security limits

/etc/security/limits.conf

{
nofile number of open files

nproc maximum number of processes

Kernel parameters

/etc/sysctl.conf


pty maximum number of pseudo-terminal def:4096

gc thresh1 garbage collector ARP entries def:128

gc thresh2 garbage collector ARP entries def:512

gc thresh3 garbage collector ARP entries def:1024

5

1st bottleneck: Resources usage

Resources

Security limits

/etc/security/limits.conf

{
nofile number of open files

nproc maximum number of processes

Kernel parameters

/etc/sysctl.conf


pty maximum number of pseudo-terminal def:4096

gc thresh1 garbage collector ARP entries def:128

gc thresh2 garbage collector ARP entries def:512

gc thresh3 garbage collector ARP entries def:1024

5

2nd bottleneck: The Bridge

Resources Bridge

Default Linux Bridge

210 = 1024 ports

6

2nd bottleneck: The Bridge

Resources Bridge

Default Linux Bridge

210 = 1024 ports

Our Linux Bridge

217 = 131,072 ports

6

2nd bottleneck: The Bridge

Resources Bridge

Default Linux Bridge

210 = 1024 ports

Our Linux Bridge

217 = 131,072 ports

Kernel

6

2nd bottleneck: The Bridge

Resources Bridge

Default Linux Bridge

210 = 1024 ports

Our Linux Bridge

217 = 131,072 ports

Kernel

6

3rt bottleneck: ARP Broadcast

Resources Bridge ARP broadcast

7

3rt bottleneck: ARP Broadcast

Resources Bridge ARP broadcast

A
RP

7

3rt bottleneck: ARP Broadcast

Resources Bridge ARP broadcast

eth0

ARP

IP to contact

MAC address?

Kernel User

7

3rt bottleneck: ARP Broadcast

Resources Bridge ARP broadcast

eth0

ARP

IP to contact

MAC address?

ARP cache

Kernel User

7

3rt bottleneck: ARP Broadcast

Resources Bridge ARP broadcast

eth0

ARP

IP to contact

MAC address?

ARP cache

Kernel User

7

3rt bottleneck: ARP Broadcast

Resources Bridge ARP broadcast

eth0

ARP

IP to contact

MAC address?

ARP cache

Broadcast to find MAC

Kernel User

7

3rt bottleneck: ARP Broadcast

Resources Bridge ARP broadcast

eth0

ARP

IP to contact

MAC address?

ARP cache

Kernel User

ARP Reply

7

3rt bottleneck: ARP Broadcast

Resources Bridge ARP broadcast

eth0

ARP

IP to contact

MAC address?

ARP cache

Kernel User

Packet 1

(MAC, NUD Reachable)

Neighbour Unreachability Detection(NUD): Reachable= Valid entry recently used

7

3rt bottleneck: ARP Broadcast

Resources Bridge ARP broadcast

ARPD

Arpd. https://github.com/shemminger/iproute2/blob/main/misc/arpd.c
7

3rt bottleneck: ARP Broadcast

Resources Bridge ARP broadcast

AutoARPD

AutoArpd. https://gitlab.com/uniroma3/compunet/networks/AutoARPD
7

3rt bottleneck: ARP Broadcast

Resources Bridge ARP broadcast

eth0

ARP

IP to contact

MAC address?

ARP cache

Kernel User

MAC address?

AutoARPD

AutoArpd. https://gitlab.com/uniroma3/compunet/networks/AutoARPD
7

3rt bottleneck: ARP Broadcast

Resources Bridge ARP broadcast

eth0

ARP

IP to contact

MAC address?

ARP cache

Kernel User

MAC address?

AutoARPD

Usage: autoarpd <RULE> [interfaces] E.g: autoarpd 02:42:ip1:ip2:ip3:ip4 eth0

AutoArpd. https://gitlab.com/uniroma3/compunet/networks/AutoARPD
7

3rt bottleneck: ARP Broadcast

Resources Bridge ARP broadcast

eth0

ARP

IP to contact

MAC address?

ARP cache

Kernel User

MAC address?

AutoARPD
(MAC, NUD reachable)

AutoArpd. https://gitlab.com/uniroma3/compunet/networks/AutoARPD
7

3rt bottleneck: ARP Broadcast

Resources Bridge ARP broadcast

eth0

ARP

IP to contact

MAC address?

ARP cache

Kernel User

MAC address?

Packet 1

(MAC, NUD Reachable)

AutoARPD
(MAC, NUD reachable)

AutoArpd. https://gitlab.com/uniroma3/compunet/networks/AutoARPD
7

3rt bottleneck: ARP Broadcast

Resources Bridge ARP broadcast

eth0

ARP

IP to contact

MAC address?

ARP cache

Kernel User

MAC address?

Packet 1

(MAC, NUD Reachable)

AutoARPD
(MAC, NUD reachable)

AutoArpd. https://gitlab.com/uniroma3/compunet/networks/AutoARPD
7

4th bottleneck: Emulating Realistic Internet Delays

Resources Bridge ARP broadcast Delays

250 ms

70
m
s

10
ms

Delay

8

4th bottleneck: Emulating Realistic Internet Delays

Resources Bridge ARP broadcast Delays

250 ms

70
m
s

10
ms

Delay

Rice University, Internet delay space synthesizer https://www.cs.rice.edu/~eugeneng/research/ds2/ 8

https://www.cs.rice.edu/~eugeneng/research/ds2/

4th bottleneck: Emulating Realistic Internet Delays

Resources Bridge ARP broadcast Delays

Linux Kernel

User Application

interface

eth0

qdisc (queuing discipline)
EgressIngress

qdisc

Level 2

IP Stack

FIFO

8

4th bottleneck: Emulating Realistic Internet Delays

Resources Bridge ARP broadcast Delays

Linux Kernel

User Application

interface

eth0

qdisc (queuing discipline)
EgressIngress

qdisc

Level 2

IP Stack

FIFO

TrafficControl (TC)

8

4th bottleneck: Emulating Realistic Internet Delays

Resources Bridge ARP broadcast Delays

qdisc
TrafficControl (TC)

- qdiscs structure

8

4th bottleneck: Emulating Realistic Internet Delays

Resources Bridge ARP broadcast Delays

qdisc

netem:
delay=10 ms

50 ms20 ms 30 ms 150 ms 270 ms

- qdiscs types

TrafficControl (TC)

- qdiscs structure

8

4th bottleneck: Emulating Realistic Internet Delays

Resources Bridge ARP broadcast Delays

qdisc

netem:
delay=10 ms

50 ms20 ms 30 ms 150 ms 270 ms

NFTables (NFT)

- qdiscs types

- packets coloring

TrafficControl (TC)

- qdiscs structure

(a new version of ip tables)

8

4th bottleneck: Emulating Realistic Internet Delays

Resources Bridge ARP broadcast Delays

qdisc

netem:
delay=10 ms

50 ms20 ms 30 ms 150 ms 270 ms

NFTables (NFT)

- qdiscs types

- packets coloring

filte
rs by ip dest

inat
ion

TrafficControl (TC)

- qdiscs structure

- packets filters

(a new version of ip tables)

8

4th bottleneck: Emulating Realistic Internet Delays

Resources Bridge ARP broadcast Delays

qdisc

netem:
delay=10 ms

50 ms20 ms 30 ms 150 ms 270 ms

NFTables (NFT)

- qdiscs types

- packets coloring

filte
rs by ip dest

inat
ion

TrafficControl (TC)

- qdiscs structure

- packets filters

(a new version of ip tables)

8

5th bottleneck: CPUs workload

CPUsResources Bridge ARP broadcast Delays

CPUs workload

9

5th bottleneck: CPUs workload

CPUsResources Bridge ARP broadcast Delays

Time inflation

9

5th bottleneck: CPUs workload

CPUsResources Bridge ARP broadcast Delays

Time inflation

Network delay

9

5th bottleneck: CPUs workload

CPUsResources Bridge ARP broadcast Delays

Time inflation

Network delay

Blockchain software

9

5th bottleneck: CPUs workload

CPUsResources Bridge ARP broadcast Delays

Time inflation

Network delay

Blockchain software

Transaction load

9

5th bottleneck: CPUs workload

CPUsResources Bridge ARP broadcast Delays

Time inflation

Network delay

Blockchain software

Transaction load

Kernel TCP protocol

9

5th bottleneck: CPUs workload

CPUsResources Bridge ARP broadcast Delays

Time inflation

Network delay

Blockchain software

Transaction load

Kernel TCP protocol

9

5th bottleneck: CPUs workload

CPUsResources Bridge ARP broadcast Delays

packet 1

packet 2

ACK
1

A B

9

5th bottleneck: CPUs workload

CPUsResources Bridge ARP broadcast Delays

packet 1

A B

packet 1

ACK
1

RTO
Retransmittion

TimeOut

9

5th bottleneck: CPUs workload

CPUsResources Bridge ARP broadcast Delays

kernel

Berkeley Packet Filter (BPF) code

9

5th bottleneck: CPUs workload

CPUsResources Bridge ARP broadcast Delays

kernel

Berkeley Packet Filter (BPF) code

9

5th bottleneck: CPUs workload

CPUsResources Bridge ARP broadcast Delays

kernel

Berkeley Packet Filter (BPF) code

9

5th bottleneck: CPUs workload

CPUsResources Bridge ARP broadcast Delays

kernel

Berkeley Packet Filter (BPF) code

9

Our Solution

CPUsResources Bridge ARP broadcast Delays

10

Our Solution

CPUsResources Bridge ARP broadcast Delays

OUR Emulation:

• Huge amount of nodes

• “Real” Network env.

• Simple to handle

• Simple to modify

3500 containers in 400GB RAM

end-to-end realistic internet delays, 8000 TCP-based and 64000 UDP-based connections

Makefile and Python scripts

Python scripts

10

Our Solution

CPUsResources Bridge ARP broadcast Delays

Future works:

? Simplify the setup

? Multiple host (kubernetes)

? Real software of a blockchain node

? Create a library to create transaction load

? Create a library to support data gathering

10

The End

Thank you!

diego.pennino@unitus.it, diego.pennino@uniroma3.it, pizzonia@ing.uniroma3.it

10

