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Blockchain Network Testing

Performing realistic experiments for blockchain networks is notoriously hard.

The complexity:

• Large number of nodes, Simulation

• Software complexity, Emulation

• Communications among nodes (properties of transport protocols), Emulation

• Nodes are spread over the internet (delay and packet loss) Emulation
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PRO:

• Simple to handle

• Simple to modify

CONS:

• Small amount of nodes
(few hundreds)

• Fake Networks

PRO:

• Huge amount of nodes

• “Real” Network
environment

CONS:

• Hard to handle

• Slow to modify

• Clusters

Boosted Hardware

on premises
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Roadmap
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The typical Docker scenario

Host

Docker
managed

linux bridge
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1st bottleneck: Resources usage

Resources

Security limits

/etc/security/limits.conf

{
nofile number of open files

nproc maximum number of processes

Kernel parameters

/etc/sysctl.conf


pty maximum number of pseudo-terminal def:4096

gc thresh1 garbage collector ARP entries def:128

gc thresh2 garbage collector ARP entries def:512

gc thresh3 garbage collector ARP entries def:1024
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2nd bottleneck: The Bridge

Resources Bridge

Default Linux Bridge

210 = 1024 ports
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Resources Bridge ARP broadcast

eth0
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IP to contact

MAC address?

ARP cache

Kernel User

Packet 1

(MAC, NUD Reachable)

Neighbour Unreachability Detection(NUD): Reachable= Valid entry recently used
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MAC address?

ARP cache

Kernel User

MAC address?
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5th bottleneck: CPUs workload
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A B
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5th bottleneck: CPUs workload

CPUsResources Bridge ARP broadcast Delays
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Berkeley Packet Filter (BPF ) code
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Our Solution

CPUsResources Bridge ARP broadcast Delays
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Our Solution

CPUsResources Bridge ARP broadcast Delays

OUR Emulation:

• Huge amount of nodes

• “Real” Network env.

• Simple to handle

• Simple to modify

3500 containers in 400GB RAM

end-to-end realistic internet delays, 8000 TCP-based and 64000 UDP-based connections

Makefile and Python scripts

Python scripts
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Our Solution

CPUsResources Bridge ARP broadcast Delays

Future works:

? Simplify the setup

? Multiple host (kubernetes)

? Real software of a blockchain node

? Create a library to create transaction load

? Create a library to support data gathering
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The End

Thank you!

diego.pennino@unitus.it, diego.pennino@uniroma3.it, pizzonia@ing.uniroma3.it
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