Toward Scalable Docker-Based Emulations of Blockchain Networks

Diego Pennino and Maurizio Pizzonia

26 May 2023, Bologna

5th Distributed Ledger Technology Workshop DLT 2023

The complexity:

• Large number of nodes,

- Large number of nodes,
- Software complexity,

- Large number of nodes,
- Software complexity,
- Communications among nodes (properties of transport protocols),

- Large number of nodes,
- Software complexity,
- Communications among nodes (properties of transport protocols),
- Nodes are spread over the internet (delay and packet loss)

Performing realistic experiments for blockchain networks is notoriously hard.

The complexity:

- Large number of nodes,
- Software complexity,
- Communications among nodes (properties of transport protocols),
- Nodes are spread over the internet (delay and packet loss)

Emulation or Simulation???

Performing realistic experiments for blockchain networks is notoriously hard.

The complexity:

- Large number of nodes,
- Software complexity,
- Communications among nodes (properties of transport protocols),
- Nodes are spread over the internet (delay and packet loss)

Emulation or Simulation???

Simulation

1

Performing realistic experiments for blockchain networks is notoriously hard.

The complexity:

- Large number of nodes,
- Software complexity,
- Communications among nodes (properties of transport protocols), Emulation
- Nodes are spread over the internet (delay and packet loss) Emulation

Emulation or Simulation???

Simulation

Emulation

Performing realistic experiments for blockchain networks is notoriously hard.

The complexity:

- Large number of nodes,
 - Software complexity,
 - Communications among nodes (properties of transport protocols), Emulation
 - Nodes are spread over the internet (delay and packet loss) Emulation

Emulation or **Simulation**???

Simulation

Emulation

PRO:

- Simple to handle
- Simple to modify

CONS:

- Small amount of nodes (few hundreds)
- Fake Networks

Local

Emulation: two choices

PRO:

- Huge amount of nodes
- "Real" Network environment

CONS:

- Hard to handle
- Slow to modify
- Clusters Distributed

ONE WAY

PRO:

- Simple to handle
- Simple to modify

CONS:

- Small amount of nodes (few hundreds)
- Fake Networks

Local

Emulation: Our Solution

PRO:

- \bullet Huge amount of nodes
- "Real" Network environment

CONS:

- Hard to handle
- Slow to modify
- Clusters Distributed

PRO:

- Simple to handle
- Simple to modify

CONS:

- Small amount of nodes (few hundreds)
- Fake Networks

Local

Emulation: Our Solution

PRO:

- Huge amount of nodes
- "Real" Network environment

CONS:

Boosted Hardware

on premises

PRO:

- Simple to handle
- Simple to modify

CONS:

The typical Docker scenario

Security limits /etc/security/limits.conf

Kernel parameters /etc/sysctl.conf

Security limits /etc/security/limits.conf **nofile** number of open files **nproc** maximum number of processes

Kernel parameters /etc/sysctl.conf

Security limits { nofile /etc/security/limits.conf } nproc

file number of open files roc maximum number of processes

Kernel parameters /etc/sysctl.conf

pty	maximum number of pseudo-terminal	def:4096
gc_thresh1	garbage collector ARP entries	def:128
gc_thresh2	garbage collector ARP entries	def:512
gc_thresh3	garbage collector ARP entries	def:1024

Security limits {
nofile number of open files
/etc/security/limits.conf nproc maximum number of processes

Kernel parameters /etc/sysctl.conf

pty	maximum number of pseudo-terminal	def:4096
gc_thresh1	garbage collector ARP entries	def:128
gc_thresh2	garbage collector ARP entries	def:512
gc_thresh3	garbage collector ARP entries	def:1024

Default Linux Bridge

$$\mathbf{\nabla \ \nabla \ \nabla \ \nabla \ \mathbf{\nabla}}$$

Default Linux Bridge

$$\nabla$$
 ∇ ∇ ∇

 $\mathbf{Our}\ \mathrm{Linux}\ \mathrm{Bridge}$

 $2^{17} = 131,072$ ports

Default Linux Bridge

 $2^{10} = 1024$ ports

 $\mathbf{Our}\ \mathrm{Linux}\ \mathrm{Bridge}$

$$2^{17} = 131,072$$
 ports

Kernel

/ net / bridge / br_private.h				
23	#ucrine	DIV_UNDU_DITEE	(1 ~~ DK_HASH_D115)	
25	#define	BR_HOLD_TIME	(1* HZ)	
26 27 28		BR_PORT_BITS BR_MAX_PORTS	10 (1<< BR_PORT_BITS)	

Default Linux Bridge

 $2^{10} = 1024$ ports

 $\mathbf{Our}\ \mathrm{Linux}\ \mathrm{Bridge}$

$$2^{17} = 131,072$$
 ports

Kernel

Neighbour Unreachability Detection(NUD): Reachable= Valid entry recently used

Arpd. https://github.com/shemminger/iproute2/blob/main/misc/arpd.c

AutoArpd. https://gitlab.com/uniroma3/compunet/networks/AutoARPD

Usage: autoarpd <RULE> [interfaces] E.g: autoarpd 02:42:ip1:ip2:ip3:ip4 eth0

Rice University, Internet delay space synthesizer https://www.cs.rice.edu/~eugeneng/research/ds2/

CPUs workload

Berkeley Packet Filter (BPF) code

kernel

/ include / net / tcp.h	
2173	<pre>static inline u32 tcp_timeout_init(struct sock *sk)</pre>
2173 2174 2175 2176 2177 2178 2179 2180 2181	(
2175	int timeout;
2176	
2177	<pre>timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);</pre>
2178	
2179	if (timeout <= 0)
2180	timeout = TCP_TIMEOUT_INIT;
2181	return timeout ;
2182	}

Berkeley Packet Filter (BPF) code

kernel

Berkeley Packet Filter (BPF) code

Berkeley Packet Filter (BPF) code

Our Solution

Our Solution

OUR Emulation:

- Huge amount of nodes ____ 3500 containers in 400GB RAM
- "Real" Network env. _____ end-to-end realistic internet delays, 8000 TCP-based and 64000 UDP-based connections
- Simple to handle ____ Makefile and Python scripts
- Simple to modify ____ Python scripts

Our Solution

Future works:

- \star Simplify the setup
- ★ Multiple host (kubernetes)
- \star Real software of a block chain node
- \star Create a library to create transaction load
- \star Create a library to support data gathering

The End Thank you!

diego.pennino@unitus.it, diego.pennino@uniroma3.it, pizzonia@ing.uniroma3.it