
Smart contracts in a bare-
bone UTXO model

Massimo Bartoletti

Università di Cagliari

Riccardo Marchesin

Università di Trento

Roberto Zunino

Università di Trento

Account-based model

• E.g. Ethereum.

• Enables a familiar
programming style.

• Users can’t know in which
state their transaction is
executed.
• Transaction reordering

attacks

• Difficult to parallelize

AMM Contract:
10 token T1, 50 token T2

TX A
swap 10 tokens T1

AMM Contract:
20 token T1, 25 token T2

TX B
Swap 1 tokens T2

TX C
swap 5 tokens T1

UTXO model

• E.g. Bitcoin, Cardano.

• Contract state is scattered
across tx outputs.

• To execute you must
specify which outputs are
being redeemed -> full
knowledge of the state.
• Less susceptible to

reordering attacks.

• Easily parallelizable.

TX A:

output 1
output 2
output 3

TX B:

output 4
output 5
output 6

TX C:

output 7
output 8

Different UTXO models

Bitcoin Cardano

• Restricted scripting
language -> limited
expressiveness:
contracts always
terminate

• No gas mechanism.

• Scripting language is
an untyped lambda
calculus –>
expressive contracts.

• Gas mechanism.

The further on the left, the easier it is to implement formal verification methods

Different UTXO models

Our model

• Bitcoin-like scripting
language extended
with covenants.

Covenants

Covenants are a set of primitives that allow a transaction script to "look into the future"
and access the output field of the redeeming transaction

Bitcoin Bitcoin + covenants

TRANSACTION A

INPUT A1 WITNESS A1

INPUT A2 WITNESS A2

OUTPUT A1 VALUE A1

<SCRIPT A1>

OUTPUT A2 VALUE A2

<SCRIPT A2>

TRANSACTION B

INPUT B1 WITNESS B1

OUTPUT B1 VALUE B1

<SCRIPT B1>

OUTPUT B2 VALUE B2

<SCRIPT B2>

TRANSACTION A

INPUT A1 WITNESS A1

INPUT A2 WITNESS A2

OUTPUT A1 VALUE A1

<SCRIPT A1>

OUTPUT A2 VALUE A2

<SCRIPT A2>

TRANSACTION B

INPUT B1 WITNESS B1

OUTPUT B1 VALUE B1

<SCRIPT B1>

OUTPUT B2 VALUE B2

<SCRIPT B2>

Different UTXO models

Our model

• Bitcoin-like scripting
language extended
with covenants.

• Scripting language is
not Turing complete,
but contracts are.

• No gas mechanism

Our contract language

Solidity-like imperative
language that compiles to
UTXO.

Compilation exploits
covenants to preserve
contract script.

More complex examples:
AMM, …

Security of the compiler

Two levels of abstraction:

• Symbolic level: Formal contracts semantics.

• Computational level: UTXO blockchain with covenants.

Symbolic to computational compiler.

Computational soundness: symbolic security implies computational security.

Full paper

Secure compilation of rich smart contracts on poor UTXO blockchains:
https://arxiv.org/abs/2305.09545

https://arxiv.org/abs/2305.09545

	Slide 1: Smart contracts in a bare-bone UTXO model
	Slide 2: Account-based model
	Slide 3: UTXO model
	Slide 4: Different UTXO models
	Slide 5: Different UTXO models
	Slide 6: Covenants
	Slide 7: Different UTXO models
	Slide 8: Our contract language
	Slide 9: Security of the compiler
	Slide 10: Full paper

