
The Referendum Problem in Anonymous Voting
for Decentralized Autonomous Organizations

Artem Grigor, Vincenzo Iovino

Giuseppe Visconti, Univ. of Salerno

5th Distributed Ledger Technology Workshop (DLT 2023), May 25–26, 2023, Bologna, Italy

Voting for Decentalized Autonomous Organizations and Web3

• DAOs are members-owned communities

without centralized leadership.

• One of the main DAOs’ functionalities is to perform on-chain

actions such as transfers of funds to an account if a sufficient

number of DAO’s members vote for that.

• One of the main types of voting procedures for DAOs is the

referendum

Shortcomings of web3 voting

• Most of the DAOs operate with contracts

over the Ethereum network contracts.

• Voting can be done by requesting each member to send

either standard digital signatures (no privacy) or, if

privacy is a must, a SNARK proof of membership in a

given census.

• Cryptographic operations consume a huge quantity of

GAS.

Minimizing the GAS cost for Anonymous Referenda

• Recently several projects in the web3

space are working on anonymous voting.

• Anonymous voting is done via SNARK proofs whose verification

costs onchain about 300-400k GAS per each voter’s proof.

• A folklore solution to cut costs is the following:

• Voters send their own digital signatures (if Aggregator is

trusted for privacy) or SNARK proofs to an off-chain

Aggregator.

• The Aggregator can then compute a SNARK proof of e.g.

knowledge of m signatures for YES and n sig. for NO and

sends it to the smart contract.

5

What if there are several proofs with conflicting result received by

the smart contract?

In this case, which result should be accepted by the smart contract?

Provable security is about relations between

assumptions and security of
The Problem

The naïve solution does not work

• Consider solutions in which there is only a single authorized

Aggregator that can communicate with the smart contract.

• System P1: there is a single Aggregator authorized to submit results

and proofs on-chain (e.g., the smart contract accepts inputs only

signed by the given Aggregator).

• Trivial system P2: the authorized aggregator submits to the smart

contract the result in the clear (zero cryptography).

• P1 is no better than P2: in P1 the aggregator can still receive 10

signatures for YES and 11 for NO and sends to the smart contract a

proof for e.g. 10 signatures for YES and 9 for NO.

• Summing up: assuming that there is a single Aggregator authorized

to communicate with the smart contract → the aggregator is

completely trusted → P1 is not better than P2.

Setting and Capability of the attacker

• Since the smart contract cannot accept data from

a single authenticated node, we must assume there

are multiple nodes over the network that can send data to the contract.

• The attacker is capable of corrupting a subset of voters.

• The attacker can control multiple nodes. For each controlled node, the

attacker waits for signatures from voters (both honest and dishonest

voters) and can use them to generate proofs to send to the contract.

• The attacker can observe signatures sent by honest voters to other

nodes, not under the attacker’s control, and replay them to the

attackers’ controlled nodes.

Policy and Properties

• We term policy the procedure that the smart contract implements to decide

the result of the election (YES or NO or TIE) based on the 𝑛 received proofs.

• A policy is good if it satisfies a Property.

• Example of property: property P1.

• Consider the set 𝑆𝑌 (𝑆𝑁) of voters who cast a vote for YES (NO) to

some node (any computer in the world). Then 𝑆𝑌 (resp. 𝑆𝑁) includes

𝑣 iff a voter 𝑣 sent a YES (resp. NO) to some (possibly dishonest)

node. Let Bad = 𝑆𝑌 ∩ 𝑆𝑁 , that is the set of bad voters who cast a vote

both for YES and NO, and let us denote by 𝑆𝑌’ = 𝑆𝑌 − Bad and 𝑆𝑁’ =

𝑆𝑁 − Bad the new sets in which we remove the bad voters.

• Then, the property 𝑃1 is formalized as follows:

• A policy is good if the decision output by the policy is equal to YES

if |𝑆𝑌’ | > |𝑆𝑁’ |, is equal to NO if |𝑆𝑁’ | > |𝑆𝑌’ | and is equal to TIE if

|𝑆𝑌’ | = |𝑆𝑁’ |.

Attempt to address the Referendum Problem

• Consider the following policy:

• From the many accepted proofs consider the one with

the highest number of votes and outputs the result

corresponding to that proof

• So, for example if the contract receives a proof π1 for

result (10,12) and a proof π2 for result (13,12), the

second one has the highest number of total votes (25)

and the contract should output as result (13,12).

Real-World Counter-Example (1)

• Consider the following real-world situation in which the contracts receives

the following:

• Proof π1 for (3, 2) from some node 𝑁1 computed with YES votes of

(𝐴, 𝑉, 𝑅) and NO votes of (𝐶, 𝑀).

• Proof π2 for (4, 3) from 𝑁2 computed with YES votes of (𝐴, 𝑉, 𝑅, 𝐶)

and NO votes of (𝑀, 𝐵, 𝐽).

• Proof π3 for (1, 3) from 𝑁3 computed with YES vote of (𝐴) and NO

votes of (𝐵, 𝐽, 𝑆)

• We also assume that 𝑁1 has been malicious in removing NO signatures of

(𝐵, 𝐽, 𝑆) that 𝑁1 received. The other nodes acted honestly based on the

signatures they received.

• According to the policy, the proof with the highest number of votes is the

second and this corresponds to a YES result that will be the result

announced by the smart contract.

Real-world Counter-Example (2)

• Consider what each voter did:

• 𝑉, 𝑅: sent a YES vote to nodes 𝑁1, 𝑁2 and nothing else.

• 𝑀 : sent a NO vote to nodes 𝑁1, 𝑁2 and nothing else.

• 𝐴: sent a YES vote to all nodes 𝑁1, 𝑁2 , 𝑁3 and nothing else.

• 𝐶: sent a NO vote to node 𝑁1 and a YES vote to node 𝑁2 and

nothing else.

• 𝑆: sent a NO vote to both 𝑁1, 𝑁3 and nothing else.

• 𝐵, 𝐽: sent a NO vote to all nodes 𝑁1, 𝑁2 , 𝑁3 and nothing else.

• Thus, removing the bad voter 𝐶 that voted both for YES and NO, we have

that (𝐴, 𝑉, 𝑅) voted only for YES (possibly replicating the votes to different

nodes) and the voters (𝑀, 𝐵, 𝐽, 𝑆) voted only for NO (possibly with

replication).

• Therefore, according to property P1 the actual result should be NO but the

contract, following the policy outputs YES, contradiction!

Another attempt to address the Referendum Problem

• Maybe the previous property was too stringent?

• Consider the following alternative property P2:

• We can assume that there is a single “trusted” node TN in the

sense that honest voters are prescribed to send their signatures

to it.

• Note: this assumption may apply not just in the context of this property.

• A policy is good if the decision output by the policy corresponds

to the result consistent with the signatures received by the

trusted node removing bad voters who sent to the trusted node

votes for both YES and NO. That is if the trusted node received

𝑚 signatures for YES and 𝑛 for NO and 𝑚 > 𝑛 the result is YES,

etc.

• Property P2 is very close to traditional e-voting in the sense that it is

implicitly stating that there is a single source of truth: whatever is

published on the trusted node TN is the «truth» and the smart

contract should give results that are consistent with just TN and

nothing else. So the property makes a lot of sense!

• Unluckily the property is unachievable as well:

• The idea is that if it were achievable with respect to previous policy, the

contract could discriminate which data are coming from TN even

without any authentication. See paper for formal counter-examples.

• In the counter-example we strongly use the fact that an adversary can

perform copy-and-paste attacks: that is uncorrupted voters are honest

in sending their data to just TN but the attacker can replicate such data

on other nodes to “confuse” the contract.

• This property is not just unachievable with respect to the previous

policy but it seems very hard to come up with other policies that

achieve P2.

Analysis of Property P2

• Are there other policies that achieve property P1?

• Imagine that our SNARKs have the following magic aggregation property

better explained by example.

• Suppose that a proof 𝜋1 of the result (1, 2) was computed by YES

signature of (𝐴) and NO signatures of (𝑉, 𝑀) and that a proof 𝜋2 of the

result (2, 1) was computed by YES signatures of (𝐴, 𝑀) and NO

signature of (𝑆).

• Then, from these two proofs, anyone can compute a new “aggregated”

proof 𝜋 of the result (1, 2) corresponding to single YES signature of (𝐴)

and NO signatures of (𝑉, 𝑆).

• Note that we removed any signature of 𝑀 from the counting because 𝑀
can be seen as a bad voter who voted both YES and NO and we did

not count twice 𝐴 (𝐴 might be honest but subject to a copy-and-paste

attack).

• Suppose also that the resulting proof preserves privacy and

succinctness.

Achievability of Property P1

• This ideal cryptographic primitive can be seen as a solution to the

referendum problem while preserving privacy and succinctness:

technically it would be a good policy for property P1.

• Indeed, consider the previous counter-example against P1:

• Suppose that 𝑁2 is the node to which honest voters are

prescribed to send their votes.

• From the 3 proofs 𝜋1, 𝜋2, 𝜋3, anyone can generate a single proof

𝜋 of the result (3, 4) corresponding to YES signatures of (𝐴, 𝑉,

𝑅) and NO signatures of (𝐵, 𝐽, 𝑆, M) where the signatures of C

have not been counted because C voted both YES and NO.

• Then, notice that a policy that uses these aggregatable

SNARKs to select the result would output as result NO as

prescribed by P1.

Aggregation would achieve Property P1

• Theorem 1. There is no aggregatable NIZK proof system.

• Idea: let 𝜋1 be a proof for claim (2,0) computed with YES sig. of

(A,B), 𝜋2 be for claim (1,0) computed with sig. of (C), and 𝜋3 be for

claim (1,0) computed with sig. of (A). Aggregation implies that from

𝜋1, 𝜋2 one can compute an aggregated proof for the claim (3,0),

and from 𝜋1, 𝜋3 one can compute an aggregated proof for the

claim (2,0), so adversary can distinguish which one among 𝜋1 and

𝜋2 was computed with sig. of A rather than sig. of C.

• See paper for details. Theorem 1 extends to witness

indistinguishability as well.

Impossibility results for non-interactive aggregatable ZK proofs

• Theorem 2. There is no aggregatable succinct (short) argument system.

• Proof idea:

• Kolmogorov complexity tells us that in a set of 2n strings there is at least

one string z that is uncompressible in the sense that no computer program

of length less than n can print z. This also applies to programs that have

hard-cored another string y.

• Then one can consider a proof 𝜋 for the claim that there are 0 NO sig. and

a YES signature for voter i iff zi=1.

• A program P can use proof 𝜋 that is, by hypothesis succinct, and the

aggregation property to discriminate whether voter i voted YES and so can

derive all bits of z and prints out z.

• Overall, we construct a program P whose size depends on a short proof 𝜋
(and other auxiliary information) that prints a string z of high Kolmogorov

complexity (i.e., uncompressible), a contradiction.

• See paper for details.

Impossibility results for non-interactive aggregatable short proofs

• We showed the hardness of facing the referendum problem.

• However, observe that our counter-examples and impossibility do not

contradict the feasibility of the following solution:

• A voter submits as ballot his own YES/NO preference + related

SNARK proof of membership.

• The smart contract hashes all voter’s ballots so as to obtain in

the end a digest H that compresses all of them.

• An aggregator submits to the contract a proof that the digest H

is such that its preimage contains m (resp. n) votes for YES

(resp. NO) along with corresponding accepted proofs.

• This approach would require recursive proofs and technically is

not succinct because it requires anyway to store an amount of

data that is proportional to the number of voters.

What our results do not cover

Provable security is about relations between

assumptions and security of
Questions?

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19

