

Impact of postquantum signatures on blockchain and DLT systems

Stephen Holmes

DLT2023 - 26 May 2023

Motivation

US National Institute of Standards and Technology (NIST) published post-quantum digital signature algorithms for standardization

Stateless post=quantum signatures

PQC Standardization Process: Announcing Four Candidates to be Standardized, Plus Fourth Round Candidates

<u>Stateful post=quantum signatures</u>

What would be the impact of changing signature scheme in blockchain or DLT systems from ECDSA to any of these post-quantum signatures? (this paper)

Approved NIST post-quantum digital signatures

Signature scheme	Post-quantum security level (bits)	Туре	Underpinni ng technology	Secret signing key (bytes)	Public key (bytes)	Signatures size (bytes)
ECDSA – today	128 Pre-quantum	Stateless	Elliptic curve	32	32	32
Dilithium	128	Stateless	Lattice	1312	2528	2420
FALCON	128	Stateless	Lattice	897	1281	690
Sphincs+	128	Stateless	Hash	32	64	17,088
LMS	128	Stateful	Hash	32	56	2828
XMSS	128	Stateful	Hash	32	68	2820
XMSS ^{MT}	128	Stateful	Hash	32	68	5605
HSS	128	Stateful	Hash	32	60	5716

- Using data from historical bitcoin transactions
 - Re-tread transactions to remove ECDSA signatures and replace with postquantum signatures.
 - Assume in post-quantum blockchain we use SHA384 not SHA256 for public key hash stored on blockchain
 - Use post-quantum signatures with same relative security as ECDSA signatures
- Blockchain and DLT systems are optimised ecosystems

 Assume the blocksize is optimised for each bitcoin/DLT system
- Evaluate the impact of adopting post-quantum signatures:
 - Transaction sizes
 - Block sizes
 - Number of transaction in existing block size

Signature impact on transaction sizes

Signature impact on block size

Number of transactions per 1MB block

Impact of post-quantum signatures on blockchain & DLT systems

	Bitcoin	Dilithium	FALCON	Sphincs256	LMS	XMSS	HSS	\mathbf{XMSS}^{MT}
Average txn size (Bytes)	552	2956	1154	17624	3364	3356	6252	6140
	1x	5x	2x	32x	6x	6x	11x	11x
Average re-calculated	1.165	5.88	2.284	35.108	6.688	6.672	12.45	12.223
block size (MB)	1x	5x	2x	30x	6x	6x	11x	11x
Number of transactions	1993	365	939	60	321	322	172	175
fitting into existing block	1x	0.18x	0.47x	0.03x	0.16x	0.16x	0.08x	0.08x

- The NIST recommended post-quantum signatures are not dropin replacements for blockchain and DLT systems
 - Signature sizes are significantly larger
 - Most schemes have larger key sizes and/or larger signatures
- Stateless post-quantum signatures lack some of today's ECDSA functionality
 - No threshold-signature capability
 - No equivalent to ECDSA recover (public key can be recovered from signature)
- Number of blockchain/DLT transactions will be reduced
 - Layer-2 transaction roll-up protocols may become a critical component
 - o But... need to be post-quantum too!

• NIST are continuing the post-quantum signature competition

NIST announced that the PQC standardization process is continuing with a fourth round, with the following KEMs still under consideration: BIKE, Classic McEliece, HQC, and SIKE. However, there are no remaining digital signature candidates under consideration. As such, **NIST is calling for additional digital signature proposals to be** considered in the PQC standardization process. Submission packages must be received by NIST by June 1, 2023.

- Security evaluation and attacks are on-going for post-quantum signatures
 - Upgrading a blockchain to a new signature scheme is disruptive
 - We may choose a higher level of security to give margin for these attacks
 - Lattice based cryptography has a long history of attacks that weaken effective security
 - But... this will further negatively impact a blockchain or DLT system

Thank you! Questions?

Stephen.holmes@surrey.ac.uk

Recap - Quantum Computer threat model

- Digital Signatures underpin security of blockchain and DLT systems
 - Blockchain and DLT systems use Elliptic Curve Digital Signature Algorithm
 - Elliptic curve signatures based on mathematical hard discrete logarithm problem
 - Hard problem for today's computers
 - Easy problem for quantum computers running Shor's algorithm
- Transaction submitted to blockchain/DLT system include public key and signed message (proving sender has access to private key)
 - Quantum adversary can derive private key from public key in a transaction
 - By cracking private key can submit transaction to steal assets by signing new transaction with private key and divert to adversaries account
- Blockchain's depend upon cryptographic hash algorithms to be secure

 NIST advice is to move from SHA256 to SHA384