

A PLATFORM FOR ANALYZING PAYMENT CHANNEL NETWORKS

IN SUPPORTING REAL-WORLD PAYMENT PATTERNS*

5th Distributed Ledger Technology Workshop (DLT 23) - May 26th, 2023 - Bologna, Italy

Marco Benedetti, Giuseppe Galano, <u>Sara Giammusso</u>, Matteo Nardelli

{first name}.{last name}@bancaditalia.it, giuseppe.galano2@bancaditalia.it

A PLATFORM FOR ANALYZING PAYMENT CHANNEL NETWORKS

5th Distributed Ledger Technology Workshop (DLT 23) - May 26th, 2023 - Bologna, Italy

IN SUPPORTING REAL-WORLD PAYMENT PATTERNS*

Marco Benedetti, Giuseppe Galano, <u>Sara Giammusso</u>, Matteo Nardelli {first name}.{last name}@bancaditalia.it, giuseppe.galano2@bancaditalia.it

AGENDA

01 INTRODUCTION

Background, motivation, and problem statement

02 RELATED WORK

Main challenges and our contributions

03 RESEARCH APPROACH

Research questions, system design and investigation 04 CONCLUSION

AGENDA

01 INTRODUCTION

Background, motivation, and problem statement

02

Main challenges and our

RELATED WORK

03 RESEARCH APPROACH

Research questions, system design, and investigation 04

CONCLUSION

BACKGROUND PAYMENT CHANNEL NETWORKS

PAYMENT CHANNEL NETWORKS

PAYMENT CHANNEL NETWORKS

PAYMENT CHANNEL NETWORKS

A Platform for Analyzing Payment Channel Network in Supporting Real-world Payment Patterns

PAYMENT CHANNEL NETWORKS

PAYMENT CHANNEL NETWORKS

MOTIVATION INTERESTING CASH-LIKE FEATURES

PCNs provide **payments** with the following features:

MOTIVATION INTERESTING CASH-LIKE FEATURES

PCNs provide **payments** with the following features:

Instantaneous

Peer-to-peer

End-to-end encrypted

MOTIVATION INTERESTING CASH-LIKE FEATURES

PCNs provide **payments** with the following features:

Instantaneous

Peer-to-peer

End-to-end encrypted

But **are PCNs scalable** in terms of Transactions Per Second (TPS)?

A payment succeed iff:

A path connecting the sender and the receiver exists,

Alice to Bob: 2 €

A payment succeed iff:

- A path connecting the sender and the receiver exists,
- s.t. each channel along the path has sufficient balance to complete the transaction.

A payment succeed iff:

- A path connecting the sender and the receiver exists,
- s.t. each channel along the path has sufficient balance to complete the transaction.

PROBLEM STATEMENT CHANNEL LIQUIDITY – PAYMENT SUCCESS RATE TRADE-OFF

Infinite capacity channels may be desired, however liquidity implies costs, e.g.:

Interest charges;

• Opportunity costs.

PROBLEM STATEMENT CHANNEL LIQUIDITY – PAYMENT SUCCESS RATE TRADE-OFF

Infinite capacity channels may be desired, however liquidity implies **costs**, e.g.:

Interest charges;

Infinite capacity channels may be desired, however liquidity implies **costs**, e.g.:

Interest charges;

Opportunity costs.

The liquidity cost may push the network to a hub-and-spoke distribution, where a few nodes, called Liquidity Service Providers (LSPs), open channels to end users to increase their:

iii Inbound capacity;

Reachability.

A PCN AS A DIGITAL PAYMENTS SYSTEM

A PCN AS A DIGITAL PAYMENTS SYSTEM

We envision a 2-tiers LSP topology:

A PCN AS A DIGITAL PAYMENTS SYSTEM

We envision a 2-tiers LSP topology:

t1-LSP: **provides liquidity** to tier-2 LSPs (e.g. Central Banks);

A PCN AS A DIGITAL PAYMENTS SYSTEM

We envision a 2-tiers LSP topology:

- **t1-LSP**: **provides liquidity** to tier-2 LSPs (e.g. Central Banks);
- **t2-LSP**: opens **channels** toward multiple **end-users** (e.g. Commercial Banks);

A PCN AS A DIGITAL PAYMENTS SYSTEM

A PCN AS A DIGITAL PAYMENTS SYSTEM

Advantages:

A PCN AS A DIGITAL PAYMENTS SYSTEM

Advantages:

Cryptographically-enforced trust-less payments

OUR IDEA A PCN AS A DIGITAL PAYMENTS SYSTEM

Advantages:

- Cryptographically-enforced trust-less payments
- Reuse existing protocols and applications (LN)

OUR IDEA A PCN AS A DIGITAL PAYMENTS SYSTEM

Advantages:

- Cryptographically-enforced trust-less payments
- Reuse existing protocols and applications (LN)
- New scalability opportunities to explore (e.g. topologies, cost, etc.)

AGENDA

01 INTRODUCTION

Background, motivation, and problem statement

02

RELATED WORKMain challenges and our contributions

03 RESEARCH APPROACH

Research questions system design, and investigation

04

CONCLUSION

A Platform for Analyzing Payment Channel Network in Supporting Real-world Payment Patterns

- Assuming a fully private setting,
- the two main challenges are:

Assuming a **fully private setting**, the two main challenges are:

the lack of knowledge of channel balances;

- Assuming a **fully private setting**, the two main challenges are:
- the lack of knowledge of channel balances;
- the **impossibility** to measure the **payment success rate**.

Assuming a **fully private setting**, the two main challenges are:

- the lack of knowledge of channel balances;
- the **impossibility** to measure the **payment success rate**.

Simulations used in many studies:

Assuming a **fully private setting**, the two main challenges are:

- the lack of knowledge of channel balances;
- the **impossibility** to measure the **payment success rate**.

Simulations used in many studies:

Lange et al. [1] assumes three different transactions volumes;

STUDYING PCNs NETWORK ASPECTS THE CHALLENGES

Assuming a **fully private setting**, the two main challenges are:

- the lack of knowledge of channel balances;
- the **impossibility** to measure the **payment success rate**.

Simulations used in many studies:

- Lange et al. [1] assumes three different transactions volumes;
- * Cordi [2] simulates transactions from a partner bank database;

STUDYING PCNs NETWORK ASPECTS THE CHALLENGES

Assuming a **fully private setting**, the two main challenges are:

- the lack of knowledge of channel balances;
- the **impossibility** to measure the **payment success rate**.

Simulations used in many studies:

- Lange et al. [1] assumes three different transactions volumes;
- * Cordi [2] simulates transactions from a partner bank database;
- Beres et al. [3] uses assumptions based on LN node owners blog posts.

STUDYING PCNs NETWORK ASPECTS OUR CONTRIBUTION

Assuming a **fully private setting**, the two main challenges are:

- the lack of knowledge of channel balances;
- the **impossibility** to measure the **payment success** rate.

Using **simulation**, we want to analyse:

The efficiency of hub-and-spoke topologies, aiming to understand whether and how their liquidity needs can support volumes of payments comparable with those of national currencies.

AGENDA

01 INTRODUCTION

Background, motivation and problem statement

RESEARCH APPROACH

Research questions, system design, and investigation 2 RELATED WORK

Main challenges and our contributions

14 CONCLUSION

RQ1.

What would be the required LSP liquidity to support a given target of transactions/second with lower bounds on payments success rate?

RESEARCH APPROACH RESEARCH QUESTIONS

RQ1.

RQ2.

What would be the required LSP liquidity to support a given target of transactions/second with lower bounds on payments success rate?

How would some liquidity optimisation techniques (e.g. multiparty payments) impact the liquidity needs and payments success rate?

RQ1.

RQ2.

What would be the required LSP liquidity to support a given target of transactions/second with lower bounds on payments success rate?

How would some liquidity optimisation techniques (e.g. multiparty payments) impact the liquidity needs and payments success rate?

RQ3.

What would be the impact of **node failures** on payment success rate?

RQ1.

RQ2.

What would be the required LSP liquidity to support a given target of transactions/second with lower bounds on payments success rate?

How would some liquidity optimisation techniques (e.g. multiparty payments) impact the liquidity needs and payments success rate?

RQ4

Given a PCN topology and the total volume of payments, how does **changing payment load distribution** impact on payment success rate?

RQ3.

What would be the impact of **node failures** on payment success rate?

RQ1.

RQ2.

What would be the required LSP liquidity to support a given target of transactions/second with lower bounds on payments success rate?

How would some liquidity optimisation techniques (e.g. multiparty payments) impact the liquidity needs and payments success rate?

RQ3.

What would be the impact of **node failures** on payment success rate?

RQ4.

Given a PCN topology and the total volume of payments, how does **changing payment load distribution** impact on payment success <u>rate?</u>

RQ5.

What kind of **privacy challenges** would such an almost-fixed topology need to consider?

SYSTEM DESIGN 4 MAIN COMPONENTS

TXs GENERATOR CALIBRATOR Compute optimal channel capacities

PAYMENTS SIMULATOR

SYSTEM DESIGN 01. PCN TOPOLOGY GENERATOR

3 types of nodes:

- Tier1-LSP
- **⊪** Tier2-LSP
- End-user (user or merchant)

SYSTEM DESIGN 01. PCN TOPOLOGY GENERATOR

5 subnetworks:

- **Ⅲ** T1-LSP T2-LSP
 - **⊪** T2-LSP T2-LSP

SYSTEM DESIGN

01. PCN TOPOLOGY GENERATOR

INPUT:

For each subnetwork

- Graph model (e.g. clique, Watts-Strogatz, Erdős-Rényi, etc.)
- **Capacity distribution**(e.g. uniform, exponential, etc.)

SYSTEM DESIGN 01. PCN TOPOLOGY GENERATOR

SYSTEM DESIGN 02. TRANSACTIONS GENERATOR

INPUT

- **₿** Set of nodes
- **∷** Rate of txs
- Statistics from ECB SPACE
 2022 Study on payments
 attitudes [4] about:
 - **TX type** (PoS, P2P, Online)
 - TX amounts

SYSTEM DESIGN 02. TRANSACTIONS GENERATOR

SYSTEM DESIGN 03. PAYMENTS SIMULATOR

An extension of **CLoTH** [5], a **PCN simulator** that mimics the routing and HTLC mechanics used in LN.

SYSTEM DESIGN 03. PAYMENTS SIMULATOR

SYSTEM DESIGN 03. PAYMENTS SIMULATOR

OUTPUT

- **Performance metrics:**
 - Payments success rate
 - Average payment time
 - etc.

SYSTEM DESIGN 04. CALIBRATOR

GOAL

Optimize the PCN by identifying the minimum channels' liquidity that satisfies a given lower bound payment success rate.

CALIBRATOR

TASKS:

- Sample the parameters for the subnetworks capacities distributions
- Run the simulator using the newly generated files
- Compute loss function on simulator output statistics

CALIBRATOR

TASKS:

- Sample the parameters for the subnetworks capacities distributions
- Run the simulator using the newly generated files
- Compute loss function on simulator output statistics

RQ1.

RQ2.

What would be the required LSP liquidity to support a given target of transactions/second with lower bounds on payments success rate?

How would some **liquidity optimisation techniques** (e.g. multiparty payments) impact the liquidity needs and payments success rate?

RQ3.

What would be the impact of **node failures** on payment success rate?

RQ4

Given a PCN topology and the total volume of payments, how does **changing payment load distribution** impact on payment success rate?

RQ5.

What kind of **privacy challenges** would such an almost-fixed topology need to consider?

RQ1.

What would be the required LSP liquidity to support a given target of transactions/second with lower bounds on payments success rate?

Once the **balances are optimized**, the
required total system
liquidity can be
analyzed.

RQ3.

What would be the impact of **node failures** on payment success rate?

RQ4.

Given a PCN topology and the total volume of payments, how does **changing payment load distribution** impact on payment success rate?

RQ5.

What kind of **privacy challenges** would such an almost-fixed topology need to consider?

© Enabling additional CLoTH features: multipath payment and node failures.

RQ2.

How would some liquidity optimisation techniques (e.g. multiparty payments) impact the liquidity needs and payments success rate?

RQ3.

What would be the impact of **node failures** on payment success rate?

RQ4

RQ5.

Given a PCN topology and the total volume of payments, how does **changing payment load distribution** impact on payment success rate?

hat kind of **privacy challenges** would such an almost-fixed topology need to consider?

Replace ECB SPACE 2022

study statistics with other assumptions in the TX Generator

Given a PCN topology and the total volume of payments, how does changing payment load distribution impact on payment success rate?

RQ1.

RQ2.

What would be the required LSP liquidity to optimisation techniques support a given target of (e.g. multiparty payments) transactions/second with impact the liquidity needs ower bounds on payments

RQ3.

What would be the impact of **node failures** on payment success rate?

Requires a deeper literature review, and an investigation of leaked information in fixed topologies

RQ5.

What kind of **privacy challenges** would such an almost-fixed topology need to consider?

AGENDA

01 INTRODUCTION

Background, motivation, and problem statement

02

RELATED WORK

Main challenges and our

03 RESEARCH APPROACH

Research questions system design, and investigation 04

CONCLUSION

CONCLUSION

ENRICHING THE WORLD REVOLVING AROUND PCNS

CONCLUSION ENRICHING THE WORLD REVOLVING AROUND PCNS

We aim to:

- Provide a better understanding of PCN scalability;
- Analyse the feasibility of using a PCN as a **possibile retail CBDC implementation**, where central banks and commercial banks could play the role of LSPs.

REFERENCES

- (1) On the Impact of Attachment Strategies for Payment Channel Networks. Kimberly Lange, Elias Rohrer, and Florian Tschorsch. 2021. 2021 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). 1-9. DOI: http://dx.doi.org/10.1109/ICBC51069.2021.9461104
- (2) Simulating high-throughput cryptocurrency payment channel networks. Christopher Neal Cordi. 2017. https://hdl.handle.net/2142/99319
- (3) A Cryptoeconomic Traffic Analysis of Bitcoin's Lightning Network. Ferenc Beres, Istvan Andras Seres, and Andras A. Benczur. 2019. DOI: http://dx.doi.org/10.48550/ARXIV.1911.09432
- (4) Study on the payment attitudes of consumers in the euro area (SPACE). ECB Surveys. 2022.
- (5) **CLoTH: A Lightning Network Simulator.** *Marco Conoscenti, Antonio Vetrò, and Juan Carlos De Martin.* **Vol. 15. SoftwareX, 100717**. DOI: http://dx.doi.org/10.1016/j.softx.2021.100717

THANK YOU

QUESTIONS?

www.bankit.art

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>