
Towards the Automated Verification of
(Ethereum) Smart Contracts

Chiara Braghin, Elvinia Riccobene and Simone Valentini

chiara.braghin@unimi.it

Why smart contract verification?

• Smart contracts can hold significant financial assets
• They are immutable after deployment
• Source code is publicly available
• Anyone can submit a transaction to a contract

And...
• Writing code correctly is hard
• Often the semantics of a SC language is not fully

understood by programmers

Why smart contract verification?

• DAO Hack on June 17, 2016: worth 3.6 million ETH,
about $70 million

• Veritaseum attack on April 2018: worth $8.4 million
• "Double" bZx DeFi Hack:

– (1) on February 14, 2020 worth $6 million
– (2) on February 18, 2020, additional $350,000

• Grim Finance on Dec 2021: worth $30 million
• ...

Why Ethereum?

State of Art (1) – Common Vulnerabilities

• Integer Overflow and Underflow
• Default Visibilities

• Race Conditions (Reentrancy, Cross-function race
conditions)

• Timestamp Dependence
• DoS with Block Gas Limit
• Forcibly Sending Ether to a Contract

State of Art (2) – Which verification technique?

• Formal verification (of bytecode or Solidity code)
– Oyente (CCS 2016) – symbolic execution
– VeriSol (Microsoft 2019) – Boogie intermediate language
– Solc-Verify (VSSTTE 2019, ESOP 2020)
– Securify 2.0 (2020) - context-sensitive static analysis in Datalog
–

• Common features of existing formal techniques:
– Not fully automated
– Difficult formal languages, translation task might be error prone
– Not user friendly
– Not maintained, code not available
– Focused only on some types of errors/attacks

Our approach: using ASM and ASMETA

• Abstract State Machine (ASM) [1,2]
– an extension of Finite State Machines, replacing unstructured FSM

control states with algebraic structures
– state transitions are performed by firing transition rules
– different computational paradigms: single agent and multi-agent
– ASM model predefined structure: a signature with declarations of

domains and functions; a block of definitions of static
domains and functions, transition rules, state invariants and
properties to verify; a main rule; a set of initial states, one of which
is elected as default.

[1] Börger, E. and Raschke, A. (2018). Modeling Companion
for Software Practitioners. Springer Verlag.
[2] Börger, E. and Stärk, R. (2003). Abstract State Machines: A Method
for High-Level System Design and Analysis. Springer Verlag.

Our approach: using ASM and ASMETA

• ASM mETAmodeling: a toolset supporting ASM formal
method for model editing, validation and verification [3]

[3] Arcaini, P., Gargantini, A., Riccobene, E., and Scandurra, P. (2011).
A model-driven process for engineering a toolset for a formal method.
Software: Practice and Experience, 41(2):155–166.

https://asmeta.github.io/

Our approach: using ASM and ASMETA

Our approach: using ASM and ASMETA

Our approach: using ASM and ASMETA

Advantages
• Easy pseudo-code format
• Executable models for different light forms of analysis
• Mantained

ASM by example (1)

contract DAO {
mapping (address => uint) balances;
function Deposit() {
balances[msg.sender] += msg.value;
}
function Withdraw(uint amount) {
if (balances[msg.sender] >= amount) {
msg.sender.call.value(amount);
balances[msg.sender] -= amount;

}
}

}
balances is updated
only after ether
transfer

ASM by example (1)

contract DAO {
mapping (address => uint) balances;
function Deposit() {
balances[msg.sender] += msg.value;
}
function Withdraw(uint amount) {
if (balances[msg.sender] >= amount) {
msg.sender.call.value(amount);
balances[msg.sender] -= amount;

}
}

}
balances is updated
only after ether
transfer

contract Attacker {
...
function moveBalance() {
dao.Withdraw();

}
function () payable {
dao.Withdraw();

}

ASM by example (2)

Set-up

ASM by example (2)

Set-up

ASM by example (2)

function Deposit() {
balances[msg.sender] += msg.value;

}

function Withdraw(uint amount) {
if (balances[msg.sender] >= amount) {

msg.sender.call.value(amount);
balances[msg.sender] -= amount;

}
}

ASM by example (2)

ASM by example (3)

VALIDATION

ASM by example (3)

VERIFICATION

Future Works

• Generalizie the approach
– Model the full semantics of SC
– Identify common patterns in the structure of the contract to

build an ASM library
– Build a catalog of common vulnerabilities and express it in terms

of properties to check
– A GUI for specification of verified smart contracts?

– What about other blockchains?

