
Security Verification of Ethereum Smart Contracts with ML
Taking a Free Ride from Static Analysis

Dalila Ressi∗, Lorenzo Benetollo†§, Carla Piazza∗, Michele Bugliesi†, Silvia Crafa ‡, and Sabina Rossi†
∗University of Udine, Italy, Email: dalila.ressi@uniud.it, carla.piazza@uniud.it

†Ca’ Foscari University of Venice, Italy, Email: lorenzo.benetollo@unive.it, michele.bugliesi@unive.it, sabina.rossi@unive.it
‡University of Padova, Italy, Email: silvia.crafa@unipd.it

§University of Camerino, Italy

Abstract—Smart contracts are compact self-executing pro-
grams running on blockchain networks and used for a range of
purposes, such as enabling transactions, enforcing agreements,
and managing digital assets. However, as any software system,
smart contracts are vulnerable to attacks, which can result in
the loss of funds or other assets.

Developers are working to minimize the number of unsafe
contracts that are deployed on blockchain networks, but the wide
range of possible vulnerabilities makes assessing the security of
smart contracts a challenging problem. Traditional methods like
static analysis have not as yet achieved the desired accuracy
and effectiveness, thus motivating a growing interest in Machine
Learning approaches to the the problem.

In this presentation we discuss problems of existing vulnerabil-
ity detection methods and propose possible mitigation strategies
to improve their accuracy, speed, scalability, and effectiveness.

I. INTRODUCTION

Blockchain technology has gained widespread adoption
in recent years as an effective infrastructure for developing
decentralized applications. Among the many platforms cur-
rently available, one of the most popular is Ethereum, which
first introduced smart contracts, self-executing programs that
automatically enforce the rules specified within their code.

Smart contracts can be implemented for various applica-
tions: from insurance refunds to financial transactions, from
corporate operations to the traceability of goods, and the
protection of intellectual property [1], [2]. They are also used
by Decentralized Autonomous Organizations (DAO) [3], real
estate transactions [4], [5], decentralized finance [6], and in
the legal industry [7].

Ethereum smart contracts are mostly written in a dedicated
programming language called Solidity. They are compiled
into bytecode and then deployed onto the Ethereum Virtual
Machine (EVM), where they are executed in a trustless,
decentralized environment.

The immutability of the blockchain ensures that once a
smart contract has been published, it cannot be modified. This
provides a certain level of protection against malicious entities
and guarantees the fairness of the contract, but also makes it
impossible to fix any bug that might be discovered in the con-
tract’s code. At the same time, being public, the blockchain is
also transparent, which makes it exposed to various attacks by
misbehaved miners and other adversaries. Table I summarizes
some of the most common vulnerabilities of Ethereum smart
contracts, arising from programming errors such as missing

TABLE I
MOST RECURRENT VULNERABILITIES IN SMART CONTRACTS

Vulnerability Description

Re-entrancy A malicious contract calls back into the calling
contract before the first invocation of the function
is finished.

Mishandled
exception

A contract is called by another contract and an
exception or error is raised in the callee without
being reported to the caller.

Randomness Using
‘Block Hash’

Random values generated based on block hashes
that can predicted by by miners.

Unprotected Ether
Withdrawal

Ether withdrawn by attackers due to missing or
inadequate access control.

Transaction-
ordering
dependence (TOD)

This vulnerability is related to the execution order
of two dependant transactions that are invoking
the same smart contract.

Timestamp
dependency

Timestamp used as a call condition can be ex-
ploited by miners to set a particular timestamp as
they can freely change it within 15 seconds.

input validation, typecast bugs, use of untrusted inputs in
security operations, unhandled exceptions, exception disorder,
integer overflow / underflow [8], [9]. Detecting these problems
is critical to avoid attacks that can cause millions of dollars
in damages and undermine the reputation of blockchain tech-
nology (e.g., the DAO vulnerability in 2016).

II. DETECTION METHODS

Vulnerability detection tools are nowadays widely available
from research institutions as well as corporations. They can
broadly be categorized as static analyzers (sometimes com-
plemented by a dynamic component) and Machine Learning
frameworks. They operate on the smart contract source code
or else directly on the contracts’ bytecode / opcode retrieved
from the blockchain (see Figure 1). Indeed, operating on the
bytecode is not only inevitable when the source code is not
publicly available, but is also the only safe choice in open
platforms like the blockchain, as the bytecodes deployed on
the chain may be crafted directly by an adversary to mount
its attacks.

A. Formal Verification Techniques

Static analysis has long been acknowledged as an effective
tool for security verification, and a number of frameworks have



Fig. 1. A simple smart contract that stores data in a private variable.

recently been developed to assess the security of Ethereum
smart contracts. We list some of the most popular frameworks
below. Slither [10] is a 2018 tool that employs data flow anal-
ysis to detect shadowing, uninitialized variables, re-entrancy,
locked ether as wells as other arbitrary ether transfers. Mythril
[11] is an analysis tool implemented in 2017 that uses sym-
bolic execution, SMT solving, and taint analysis for Ethereum
and other other blockchain platforms. Oyente [12] employs
symbolic execution for analyzing a variety of properties, in-
cluding transaction ordering and timestamp dependency, code
re-entrancy and mihandled exceptions. Securify [13], released
in 2018, also utilizes symbolic execution to detect a range of
vulnerabilities by taking as input the contract bytecode and a
set of security patterns.

While most existing frameworks are based on static anal-
ysis, some exploit dynamic analysis, or a mixture of both
to increase precision. A notable example is SmartScan [14],
an automated tool developed in 2021 that combines static
and dynamic analysis specifically targeted at detecting DoS
attacks.

B. Machine Learning Frameworks

Though static analysis is a powerful, and fully general
approach, static analyzers are, by design, targeted at assessing
specific security properties, associated with the notion of safety
they are meant to enforce. As a result, while the existing
tools prove effective for detecting specific vulnerabilities, their
scope remains limited. The problem can be circumvented by
combining different analyzers, but the practice shows that
running multiple analyses on the same code may turn out to
be computationally expensive and is exposed to the risk of
receiving inconsistent results [15]. .

Machine Learning offers an alternative solution. Indeed, ML
frameworks may leverage static analysis by employing (mul-
tiple) analyzers to create wide ranged labeled datasets which
in turn may be used to train ML models for classification
and vulnerability detection. Several ML experiments have been
reported in the recent literature.

One method consists in transforming the source code of
smart contracts (or related bytecodes) into 2D images, which
are then fed to a classical Convolutional Neural Network
(CNN), such as in [16] and [17]. Another popular solution is
to use Graph Neural Networks (GNNs) that take as input the
smart contracts with graph representation [18]–[20]. A further

approach is proposed in [21], where the authors improve
the privacy and security of smart contracts by restricting
access privileges. [22] tested the accuracy of multiple machine
learning-based approaches using XGBoost for training the
models and SMOTETomek for balancing the training set, and
showed they can predict six different types of vulnerabilities
with an F1-score over 96%. Similarly, in [15] the authors
investigate the use of various machine learning techniques
to identify 16 different types of vulnerabilities. Specifically,
they use SVM, Random Forest, Decision Tree, and a custom
NN and compare the results and execution time to tradi-
tional techniques such as static code analyzers (Mythril and
Slither [10]). The results of an experiment on about 1000 smart
contracts show that machine learning frameworks can detect
vulnerabilities with an average of 95% accuracy (and F1 score
of 79%), within less than one second, while static techniques
can require up to one hour to complete their tasks.

C. Limitations and Open Problems

As we just observed, Machine Learning seems to achieve
greater performance and to guarantee protection against a
wider range of vulnerabilities when compared to the currently
available formal verification frameworks. On the other hand,
ML suffers from an inherent scalability limitation that emerges
whenever a new type of vulnerability is exposed, requiring
extensive retraining for the otherwise obsolete, largely useless,
ML algorithms trained on the original datasets. A more serious
issue for ML frameworks is that the current static analyzers
available to create the training datasets are hardly accompanied
by formal soundness guarantees (with few exceptions, notably
[23]), with the consequence that the currently operating ML
algorithms are likely to have been (and still be) trained on
mislabeled observations.

A further, independent question for current ML frameworks
is their degree of precision. Establishing a standardized eval-
uation metrics would constitute a valuable contribution as
it would make it possible to guide the choice of the most
effective frameworks. Unfortunately, this is still an open, and
challenging problem, as the dataset currently employed for
training vary greatly both in size, in the format of the code
analyzed (source code vs bytecode vs opcode), as well as in
the ML technique adopted for the analysis.

D. Future Work

Our plans for future work address the limitations and open
questions we just outlined, in a pragmatic attempt to mitigate
them. Specifically, our initial effort will be directed towards
the creation of a standardized dataset of Ethereum smart
contracts, capturing a wide range of vulnerabilities, (ideally
all the known ones), and including all three smart contract
formats (source, byte and opcode). Running multiple analyzers
on the dataset will then bring us devise a solid labeling for
the dataset to be used as a solid basis for training. The
standardized dataset will also provide a benchmark to held
develop a standardized metrics for the evaluation of different
frameworks.



REFERENCES

[1] B. Hu, Z. Zhang, J. Liu, Y. Liu, J. Yin, R. Lu, and X. Lin, “A
comprehensive survey on smart contract construction and execution:
paradigms, tools, and systems,” Patterns, vol. 2, no. 2, p. 100179, 2021.

[2] S.-Y. Lin, L. Zhang, J. Li, L.-l. Ji, and Y. Sun, “A survey of applica-
tion research based on blockchain smart contract,” Wireless Networks,
vol. 28, no. 2, pp. 635–690, 2022.

[3] S. Wang, W. Ding, J. Li, Y. Yuan, L. Ouyang, and F.-Y. Wang, “Decen-
tralized autonomous organizations: Concept, model, and applications,”
IEEE Transactions on Computational Social Systems, vol. 6, no. 5, pp.
870–878, 2019.

[4] F. Ullah and F. Al-Turjman, “A conceptual framework for blockchain
smart contract adoption to manage real estate deals in smart cities,”
Neural Computing and Applications, pp. 1–22, 2021.

[5] I. Karamitsos, M. Papadaki, N. B. Al Barghuthi et al., “Design of
the blockchain smart contract: A use case for real estate,” Journal of
Information Security, vol. 9, no. 03, p. 177, 2018.

[6] Y. Chen and C. Bellavitis, “Blockchain disruption and decentralized
finance: The rise of decentralized business models,” Journal of Business
Venturing Insights, vol. 13, p. e00151, 2020.

[7] B. Waltl, C. Sillaber, U. Gallersdörfer, and F. Matthes, “Blockchains
and smart contracts: a threat for the legal industry?” in Business
Transformation through Blockchain. Springer, 2019, pp. 287–315.

[8] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in Principles of Security and Trust: 6th Inter-
national Conference, POST 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings 6. Springer, 2017, pp. 164–
186.

[9] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee, “Systematic
review of security vulnerabilities in ethereum blockchain smart contract,”
IEEE Access, vol. 10, pp. 6605–6621, 2022.

[10] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 2019, pp. 8–15.

[11] “Mythril project,” https://github.com/ConsenSys/mythril, 2019, [Online].
[12] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart

contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 254–269.

[13] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 67–82.

[14] N. F. Samreen and M. H. Alalfi, “Smartscan: An approach to detect
denial of service vulnerability in ethereum smart contracts,” 2021.

[15] P. Momeni, Y. Wang, and R. Samavi, “Machine learning model for smart
contracts security analysis,” in 2019 17th International Conference on
Privacy, Security and Trust (PST). IEEE, 2019, pp. 1–6.

[16] T. H.-D. Huang, “Hunting the ethereum smart contract: Color-inspired
inspection of potential attacks,” arXiv preprint arXiv:1807.01868, 2018.

[17] S.-J. Hwang, S.-H. Choi, J. Shin, and Y.-H. Choi, “Codenet: Code-
targeted convolutional neural network architecture for smart contract
vulnerability detection,” IEEE Access, vol. 10, pp. 32 595–32 607, 2022.

[18] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart contract
vulnerability detection using graph neural network.” in IJCAI, 2020, pp.
3283–3290.

[19] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang, “Com-
bining graph neural networks with expert knowledge for smart contract
vulnerability detection,” IEEE Transactions on Knowledge and Data
Engineering, 2021.

[20] J. Cai, B. Li, J. Zhang, X. Sun, and B. Chen, “Combine sliced joint graph
with graph neural networks for smart contract vulnerability detection,”
Journal of Systems and Software, vol. 195, p. 111550, 2023.

[21] B. D. Deebak and A.-T. Fadi, “Privacy-preserving in smart contracts
using blockchain and artificial intelligence for cyber risk measurements,”
Journal of Information Security and Applications, vol. 58, p. 102749,
2021.

[22] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “Contractward:
Automated vulnerability detection models for ethereum smart contracts,”
IEEE Transactions on Network Science and Engineering, vol. 8, no. 2,
pp. 1133–1144, 2020.

[23] C. Schneidewind, M. Scherer, and M. Maffei, “The good, the bad and
the ugly: pitfalls and best practices in automated sound static analysis
of ethereum smart contracts,” in Leveraging Applications of Formal
Methods, Verification and Validation: Applications: 9th International
Symposium on Leveraging Applications of Formal Methods, ISoLA
2020, Rhodes, Greece, October 20–30, 2020, Proceedings, Part III 9.
Springer, 2020, pp. 212–231.


