
ScriFy : an online tool to validate Bitcoin
scripts

Stefano Bistarelli1, Andrea Bracciali2, and Ivan Mercanti1

1University of Perugia
2University of Stirling

The Bitcoin blockchain records chained transactions of tokens from source
to destination accounts. Such accounts are not explicitly linked to the owners’
identity but to a cryptography key, which can be freely - and secretly - generated
by any party. Each transaction has associated an input script and an output
script. When a new transaction is proposed, the input script provides the needed
credentials to unlock funds. The output script of the previous transaction that
sourced the account validates the provided credentials according to a chosen
scheme.

Scripts are written in a precise way; a stack-based scripting language called
script. Striving for correctness, robustness and efficiency in such an unconven-
tional and constrained execution model, script has been designed according to
minimality principles, e.g. it is not Turing complete, has no recursion, cycles
or procedure calls, has an execution cost (to be paid by the transaction pro-
poser) proportional to the length of the code, and “dangerous” operations, like
multiplication, are not allowed.

We provide a solution to the problem of the satisfiability of ”open” output
scripts, i.e. given an output script, which information has to be provided by an
input script to let the output script run successfully and validate the transition?
Although the simulation and execution of ”closed” input-output scripts present,
no problems and many tools and simulators are available1, we observe that
verification frameworks for the satisfiability of available scripts that cover a
substantial fragment of the language, are up-to-date with the latest script
improvements and may modularly scale up to decentralised applications, are
not so widespread.

The execution of script code of an output script is simulated from an empty
stack according to symbolic semantics. The initial stack for a successful compu-
tation is defined via a lazy approach collecting the weakest constraints on initial
data over successful computations (further details in [2]). On top of that, we
implemented a script symbolic verification in ScriFy (SCRIpt veriFY), an

1https://siminchen.github.io/bitcoinIDE/build/editor.html.

1



open source application implemented in Haskell, with a Prolog constraint solver
and distributed as a Docker component [1].

Given an output script S, the current version of the tool returns all the
existing satisfiable Γs for each successful computation of S. Such Γs are speci-
fications of (all the possible) input scripts I, which can be used to redeem the
associated transaction. ScriFy works by an exhaustive traversal of the space
of successful traces. The trace is abandoned when an error or inconsistency in
Γ is detected. Γ is satisfied by applying well-known Finite Domain Constraint
Solvers. The tool uses the solver embedded in swi-prolog2. In order to bet-
ter facilitate the use of ScriFy, it has been equipped with an dockered web
interface3.The open output script to be verified in the top text area can be in-
serted. We also designed a select input where it is possible to choose between
several example scripts. The ”Run” button triggers verification, with results
reported in the bottom area. The report consists mainly of: i) the parsing of
the given script, as a sanity check; ii) is the number of data required to unlock
the script and the structure of the required initial stack; iii) the constraints on
these elements, including inference of their type; iv) the final judgment. The
redeem script checkbox, instead, is needed to insert a redemption script of a
P2SH transaction. Selecting the checkbox, a new text area for the redemption
script will appear, and it is possible to insert a script there.If the script inserted
in the first text area (the one for the script we want to unlock) is a P2SH or
P2WSH, and the checkbox is selected, the tool will verify the script, including
the redeem one.

Currently, the evaluation rules and the prototype tool cover a major portion
of script’s language. Interesting research for future work involves extending
them further, e.g. starting with the inclusion of locktime operations, and also
considering time-dependent interpretation of some commands. The overarching
goal of this work, however, is to push further the automation of the verification of
protocols and decentralised applications based on the Bitcoin blockchain along
the lines of the atomic payment channel example.

References
[1] Stefano Bistarelli, Andrea Bracciali, Rick Klomp, and Ivan Mercanti. To-

wards automated verification of bitcoin-based decentralised applications. In
The 38th ACM/SIGAPP Symposium on Applied Computing (SAC ’23),
March 27-31, 2023, Tallinn, Estonia.

[2] Rick Klomp and Andrea Bracciali. On symbolic verification of bitcoin’s
script language. In Joaquín García-Alfaro, Jordi Herrera-Joancomartí, Gio-
vanni Livraga, and Ruben Rios, editors, Data Privacy Management, Cryp-
tocurrencies and Blockchain Technology - ESORICS 2018 International

2swiprolog: http://www.swi-prolog.org/
3http://scrify.dmi.unipg.it/.

2



Workshops, DPM 2018 and CBT 2018, Barcelona, Spain, September 6-
7, 2018, Proceedings, volume 11025 of Lecture Notes in Computer Science,
pages 38–56. Springer, 2018.

3


