
A Traffic-Analysis Proof Solution to Allow K-Anonymous
Payments in Pseudonymous Blockchains

Francesco Buccafurri
bucca@unirc.it

Università Mediterranea
Reggio Calabria, Italy

Vincenzo De Angelis
vincenzo.deangelis@unirc.it
Università Mediterranea
Reggio Calabria, Italy

Sara Lazzaro
sara.lazzaro@unirc.it

Università Mediterranea
Reggio Calabria, Italy

ABSTRACT
Pseudonimity in blockchain often misses the goal of effectively hid-
ing the actual identity of users. Also anonymous blockchains such as
Monero and ZCash can be de-anonymized through network traffic
analysis. In this work, we present a solution to achieve 𝑘-anonymity
guarantees (resisting traffic analysis attacks) in pseudonymous
blockchains. The idea underlying our solution is to organize users
in rings of cover transactions, through which users indistinguish-
ably exchange actual data or random noise and the initiator is hid-
den within the ring. Importantly, this mechanism does not require
off-chain communication.

KEYWORDS
Pseudonymity, Traffic analysis attacks, 𝑘-anonymity

1 INTRODUCTION AND MOTIVATION
Blockchain is a distributed ledger that keeps track of the occurrence
of events. An entity can generate a transaction toward another
entity to exchange a value. This transaction is validated by peers
participating in the network, and thus does not require any third-
trusted party to be validated.

A relevant feature offered by the most known blockchains (e.g.,
Ethereum and Bitcoin) is pseudonymity. Each user is associated
with an address (not directly linked to the real identity of the user)
that allows them to send and receive cryptocurrency. Nevertheless,
all the transactions a user makes with the same address are linked
among them. In the literature, several works were proposed con-
cerning the de-anonymization of blockchain addresses [4] also in
the case a single user leverages multiple addresses [3]. In this case,
the goal is to create a cluster of the addresses belonging to the same
user and possibly associate it with external information (such as
the IP address), thus de-anonymizing the blockchain address.

Different blockchains such asMonero and ZCash offer full anonymity
[1] in place of pseudonymity, by making the transactions made by
the same user unlinkable to each other. However, as shown in [2],
effective de-anonymization attacks based on network analysis can
be performed even against anonymous blockchains.

In this preliminary work, we propose a solution to achieve
anonymity guarantees in pseudonymous blockchains resisting traf-
fic analysis attacks. Specifically, we aim to hide the sender activity
(i.e., the fact that a user generates a transaction) in an anonymity
set of 𝑘 users also against a global adversary observing the entire
traffic (at the network layer) exchanged in the network. Importantly,
our approach does not require off-chain communication channels.

2 THE PROPOSED APPROACH
The aim of our approach is the provision of a mechanism allowing
users to send money in a 𝑘-anonymous way.

The idea at the basis of this solution consists of organizing
the users in groups of 𝑘 users, called rings. A ring represents an
anonymity set of size 𝑘 , in the sense that each user in a ring who
generates a payment in favor of any (even external) user cannot be
distinguished among the other 𝑘 −1 users of the ring. From another
point of view, a ring represents also a way to implement a private
distributed ledger among the 𝑘 users composing the ring. We will
see below the exact meaning of this point. In the ring an information
hiding mechanism is enabled, consisting of continuous execution
of cover transactions moving in a circular fashion. This way, the
users indistinguishably exchange actual data or random noise and
the initiator is hidden within the ring. This mechanism is better
explained below. Our solution leverages the typical built-in features
of any pseudonymous blockchain supporting smart contracts. In
this work, we refer to the Ethereum blockchain.

Now we see how payments are implemented. Each user deposits,
in a dedicated smart contract, a given amount of cryptocurrency,
which can be only spent for 𝑘-anonymous payments. All the 𝑘 users
are aware of this special account balance of any user in the ring.
Actually, the account balances are the result of the agreement of
users in the ring. In this sense, the ring implements a sort of internal
ledger, as anticipated earlier. Each payment must be authorized by
a threshold of 𝑡 other users of the ring, by following a classical BFT
approach for consensus (typically, 𝑡/𝑘 can be set to 2/3). Specifically,
we require that 𝑡 confirmations, among the 𝑘 users forming the ring,
are needed to authorize a transaction from the smart contract to a
given recipient. To achieve anonymity, the transaction authorizing
the smart contract to spend cryptocurrency is not provided directly
by the actual sender, but all the users of the ring are involved in
the process. As outcome of the solution, we obtain 𝑘-anonymity
against any external observer different from the 𝑘 users also with
the capability to monitor the entire network traffic (global passive
adversary).

2.1 Ring Construction
In this section we describe how rings are built.

The first requirement is that ring construction should happen
in a fully decentralized way, such that no off-chain interaction is
performed. To reach this goal, we propose a Distributed Hash Table
implemented via the smart contract that allows the users to find the
ring to which they belong, through their Ethereum address. How-
ever, if this computation depended only on the Ethereum address,
another problem would arise. Indeed, an adversary could generate

2 2 THE PROPOSED APPROACH

a lot of Ethereum addresses in order to find at least 𝑡 addresses that
would belong to the same ring. This way, they would be able to
control the ring and spend the cryptocurrencies of the other users.

We recall that, for each user belonging to a ring, an initial deposit
is paid. This also works as a disincentive for an adversary. Moreover,
if users were not able to precompute the ring in which they would
fall, the adversary would have to generate (and pay for) a greater
number of addresses to increase their chance to have at least 𝑡
address in the same ring. Then, the economical effort required from
the adversary would be high. Thus, we have to prevent an adversary
from having control of at least 𝑡 addresses in the same ring.

To achieve this, we propose the following mechanism. Suppose
our system supports 𝑛 users to split into rings of size 𝑘 . As above
mentioned, each user deposits a given amount of cryptocurrency
in the smart contract to become part of a ring. To do this, the users
simply invoke a function of the smart contract that collects their
deposits and stores their Ethereum addresses. However, the rings
are not formed until the 𝑛𝑡ℎ user asks for joining a ring. When the
𝑛𝑡ℎ user joins the ring, the invoked function performs in a slightly
different way. After collecting the deposit and storing the Ethereum
address of the 𝑛𝑡ℎ user, the function retrieves and stores the number
of the last block included in the blockchain. The idea is to use the
hash of the next block as an unpredictable value to implement the
distributed Hash Table and prevent any adversary to precompute
the rings to which the users belong.

Specifically, when the block including the last transaction is
mined and added to the blockchain, any entity can invoke another
function that retrieves the digest of such a block, say 𝐷 . Then, for
each user 𝑢 with Ethereum address 𝐸𝑡ℎ𝑢 , a value 𝑟𝑢 = 𝐻 (𝐸𝑡ℎ𝑢 | |𝐷)
is computed and associated with 𝐸𝑡ℎ𝑢 , where 𝐻 denotes a cryp-
tographic hash function (e.g., Keccak256). Then, these values are
ordered in an increasing way to form the rings. Specifically, the
first 𝑘 values form the first ring, the next 𝑘 values form the second
ring, and so on. Observe that, since 𝐷 is not known before the last
user joins the system, the users cannot precompute in advance the
rings they fall.

2.2 The Anonymous Protocol
In our protocol, each user communicates through the blockchain
by generating a transaction toward the next user in the ring. The
next of the user 𝑢 is the user associated with the smallest value
greater than 𝐻 (𝐸𝑡ℎ𝑢 | |𝐷) or the smallest value of the ring (in the
case 𝐻 (𝐸𝑡ℎ𝑢 | |𝐷) is the maximum value).

A transaction without any amount of cryptocurrency is sent by
a user toward the next user in the ring. Such a transaction contains
some data encrypted with the public key of the next user. After
receiving this transaction and processing it, the receiving user for-
wards it to the next user (possibly after waiting an amount of time).
Initially, the data exchanged in the transaction are random bytes.
However, when needed, these data can be replaced with actual
information encrypted in such a way that an external observer
cannot distinguish between actual data and random ones, thus not
identifying the originator of the information.

Consider a user𝑢 whowants to generate an anonymous payment
of 𝑐 Ethers toward a recipient 𝑟 . The user waits for a transaction
from the previous user in the ring containing random bytes. Then,

it replaces these bytes with 𝐸𝑡ℎ𝑢 , 𝐻 (𝐸𝑡ℎ𝑢 | |𝑠), 𝑠, 𝑟 , 𝑐, 𝐸𝑡ℎ𝑢′ , where
𝐻 (𝐸𝑡ℎ𝑢 | |𝑠) represents the digest of the Ethereum address of 𝑢 con-
catenated with a salt 𝑠 , while 𝐸𝑡ℎ𝑢′ represents the Ethereum address
of another randomly selected user 𝑢′, called exit-user. Moreover, 𝑢
adds to the transaction a signature 𝜎𝑢 , verifiable through the same
public key associated with 𝐸𝑡ℎ𝑢 , of all the data included in it. Then,
the above information is encrypted with the public key of the user
succeeding 𝑢 in the ring and sent to them via a transaction. At this
point, the transaction makes a complete loop of the ring and all the
users crossed in the ring locally store the data of this transaction.
Once the transaction reaches 𝑢, they send the same transaction to
their next in the ring. Then, the transaction continues to turn in
the ring from each user to the next.

Each user placed in the ring beyond 𝑢, after receiving the trans-
action, decrypts it and sees that it contains a transaction request
from 𝑢. Then, they verify the signature 𝜎𝑢 . Finally, they check their
address against that of the chosen exit-user 𝑢′. Now, two cases
might occur: (1) their address precedes that of 𝑢′ in the ring (i.e.,
𝑢′ can be reached, with a lesser number of users, from the current
user by moving forward), (2) their address coincides with that of 𝑢′
or their address follows that of 𝑢′ in the ring (i.e., 𝑢′ can be reached,
with the lesser number of users, from the current user by moving
backward).

In case (1), the user checks if the current transaction was seen
in the ring more than one time. If it is not the case, the received
transaction is encrypted (as it is) with the public key of the next
user in the ring and sent to them. Otherwise, if the transaction was
already seen in the ring more than one time, then the user performs
as in case (2), explained below. In case (2), the user performs as
follows. First, the user invokes a function of the smart contract,
passing as input 𝐻 (𝑢 | |𝑠), 𝑟 , 𝑐 . Observe that, the first user generating
such a transaction is the exit-user. Then the smart contract locally
stores 𝐻 (𝑢 | |𝑠), 𝑟 , 𝑐 along with the information that 𝑢′ approved the
requested transaction. Recall that, to perform the required transac-
tion, the smart contract must receive at least 𝑡 authorizations. At
the same time, the transaction in the ring is sent to the following
users thus making a complete loop in the ring. This way, all the
users in the ring approving the requested transaction send to the
smart contract the above-described authorization. Once the smart
contract receives the 𝑡𝑡ℎ authorization, it performs the required
transaction, i.e., it transfers the amount 𝑐 toward 𝑟 . Finally, all the
users in the ring update the balance of 𝑢.

REFERENCES
[1] Nitish Andola, Raghav, Vijay Kumar Yadav, S. Venkatesan, and Shekhar Verma.

2021. Anonymity on blockchain based e-cash protocols—A survey. Computer
Science Review 40 (2021), 100394. https://doi.org/10.1016/j.cosrev.2021.100394

[2] Alex Biryukov and Sergei Tikhomirov. 2019. Deanonymization and linkability of
cryptocurrency transactions based on network analysis. In 2019 IEEE European
symposium on security and privacy (EuroS&P). IEEE, 172–184.

[3] Dmitry Ermilov, Maxim Panov, and Yury Yanovich. 2017. Automatic bitcoin
address clustering. In 2017 16th IEEE International Conference on Machine Learning
and Applications (ICMLA). IEEE, 461–466.

[4] Hao Hua Sun Yin, Klaus Langenheldt, Mikkel Harlev, Raghava Rao Mukkamala,
and Ravi Vatrapu. 2019. Regulating cryptocurrencies: a supervised machine learn-
ing approach to de-anonymizing the bitcoin blockchain. Journal of Management
Information Systems 36, 1 (2019), 37–73.

https://doi.org/10.1016/j.cosrev.2021.100394

	Abstract
	1 Introduction and Motivation
	2 The Proposed Approach
	2.1 Ring Construction
	2.2 The Anonymous Protocol

	References

