
On the Synchronization Power of Token Smart Contracts
Giorgia Azzurra Marson

NEC Laboratories Europe
Heidelberg, Germany

giorgia.marson@neclab.eu

Abstract
Modern blockchain systems support a variety of distributed applications beyond cryptocurrencies.

In particular, smart contracts allow users to execute arbitrary code in a distributed and decentralized
fashion. Regardless of their intended application, current blockchain platforms implicitly assume
consensus for the correct execution of a smart contract, thus requiring that all transactions are
totally ordered. Contrary to common belief, however, consensus is not a necessary requirement to
prevent double-spending in a cryptocurrency (Guerraoui et al., PODC’19). On the other hand, the
decentralized execution of arbitrary smart contracts does require agreement on the blockchain state,
hinting that consensus is needed in this case. Based on our recent findings (Alpos et al., ICDCS’21),
in this presentation we will take a closer look at the synchronization requirements of smart-contract
token standards defined by Ethereum’s Request for Comment (ERC).

Overview
The increasing popularity of decentralized applications has motivated prominent efforts towards improving
the scalability and performance of blockchain protocols. Research on distributed protocols has led to
many new proposals to scale the throughput of blockchain platforms, giving rise to a plethora of different
distributed ledgers today. A common objective of these proposals is to ensure that blockchain nodes
execute all transactions in the same order, using the replicated state-machine approach where a broadcast
protocol allows blockchain users to agree on a sequence of transactions. This process is often referred to
as “consensus”, which is equivalent to total-order broadcast. Since reaching consensus is expensive, it is
important to understand where it may be avoided without losing consistency.

Concurrent objects for synchronization For investigating concurrency, one usually considers two
distinct models: message-passing and shared memory. In the message-passing model, processes do not
have any shared state and communicate with each other via messages. Processes in the shared-memory
model, however, operate on the same data, which they access concurrently. Despite these differences,
results in one model can be transferred to the other one. The gist of a synchronization problem in a
distributed system using message passing is often more clearly expressed by the corresponding shared-
memory formalization. Shared-memory abstractions are objects providing operations to processes. The
simplest such object is a register, which offers operations for reading and writing a value. Another
important object is consensus, which implements agreement on a value.

The prominent result by Fischer, Lynch, and Paterson [1] establishes the impossibility of implementing
consensus from atomic registers in a wait-free manner. In other words, implementing a consensus object
with only atomic registers cannot ensure that every invocation to consensus operations terminates. This
means that consensus requires a higher level of synchronization than atomic registers. In fact, the
consensus object is universal, in the sense that any shared object described by a sequential specification
can be wait-free implemented from consensus objects and atomic registers. Therefore, consensus can be
used to reason about the synchronization power of all shared objects among a number of processes. This
leads to the central concept of consensus number to express the synchronization power of shared objects.
Formally, the consensus number associated with a shared object O is the largest number n such that it
is possible to realize a consensus object from atomic registers and objects of type O, in a system of n

1

giorgia.marson@neclab.eu


processes. Consensus numbers establish a hierarchy among concurrent objects and allow for comparing
them based on their synchronization power as well as their synchronization requirements [2].

Cryptocurrencies do not need consensus! Guerraoui et al. [3] propose a shared-memory abstraction
for asset transfer—the basic functionality of a cryptocurrency as implemented in Bitcoin [4]—and show
that this requires only a minimal level of synchronization. Specifically, asset transfer has consensus
number 1 in the wait-free hierarchy. Their result suggests that current implementations may be sacrificing
efficiency and scalability because they synchronize transactions much more tightly than actually needed.
For cryptocurrencies that support shared accounts with up to k owners, Guerraoui et al. introduce a
k-shared asset transfer object and show that it has consensus number k, which is as powerful as consensus
among its k owners. Going beyond their theoretical elegance, these results are of great practical interest
because they pave the way to consensus-free implementations of cryptocurrencies.

Our results Modern blockchains support a variety of distributed applications realized by smart
contracts. These applications go far beyond cryptocurrencies and decentralized payments, as initially
envisioned by Bitcoin. Smart contracts enable blockchain users to execute arbitrary programs in a fully
decentralized fashion, akin to a world computer. Introduced by Ethereum, smart contracts come in many
different flavors and are the key element in most decentralized finance (DeFi) projects today. Typically,
smart contracts represent value using tokens. These are blockchain-based assets which can be exchanged
across users of a blockchain platform. Ethereum’s Request for Comment (ERC) 20 defines a blueprint for
the creation of a specific type, dubbed ERC20 token, one of the most widely adopted tokens on Ethereum.
The ERC20 standard provides functions for handling tokens over Ethereum, allowing users to own and
exchange goods such as digital and physical assets. It formulates a common interface for fungible tokens
and has become the most widely-deployed API for implementing a token functionality.

To investigate the synchronization power of token smart contracts on Ethereum, in our work [5] we
propose a shared-memory abstraction for a token object that captures and generalizes the functionality
of an ERC20 contract. ERC20 is considerably more flexible than the transaction model in Bitcoin. The
additional features of ERC20 make it possible, for example, that account owners allow other users to
interact with their accounts and issue transfers on their own. Likewise, the ERC20 token object is strictly
more powerful than k-shared asset transfer, because account owners may approve other spenders to
transfer tokens. Moreover, an owner may approve new spenders flexibly, at any time, and for arbitrary
amounts. This results in a dynamicity that has no counterpart with the standard asset transfer object.
This increased level of dynamicity is reflected in the token synchronization requirements. Namely, the
consensus number of ERC20 tokens depends on the number of approved spenders for the same account,
which may change as the account owner enables more spenders.

Our findings suggest that synchronization among a dedicated subset of blockchain nodes is enough
for building prominent applications. Namely, ERC20 require consensus only among the largest set of
enabled spenders for an account. Importantly, the exact synchronization requirements can be readily
deduced from the current object’s state by reading the blockchain state. This opens up the possibility to
deploy realistic smart contracts, such as ERC tokens, on more robust and performant protocols than
consensus-based blockchains.

References
[1] M. J. Fischer, N. A. Lynch, and M. Paterson, “Impossibility of distributed consensus with one faulty

process,” J. ACM, vol. 32, no. 2, pp. 374–382, 1985.

[2] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program. Lang. Syst., vol. 13, no. 1, pp. 124–149,
1991.

[3] R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovic, and D. Seredinschi, “The consensus number of a
cryptocurrency,” in PODC. ACM, 2019, pp. 307–316.

[4] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” https://bitcoin.org/bitcoin.pdf, 2009.

[5] O. Alpos, C. Cachin, G. A. Marson, and L. Zanolini, “On the synchronization power of token smart
contracts,” in ICDCS. IEEE, 2021, pp. 640–651.

2

https://bitcoin.org/bitcoin.pdf

