
Smart contracts in a bare-bone UTXO model

Massimo Bartoletti1, Riccardo Marchesin2, Roberto Zunino2
1Università degli Studi di Cagliari, 2Università degli Studi di Trento

Abstract

We present a framework for smart contracts in the UTXO-based model.
Our approach allows for expressive smart contracts written in a high-level
language, which are securely compiled into bare-bone UTXO transactions.

Most mainstream blockchains today follow the account-based model: e.g.,
besides Ethereum, also Avalanche, Hedera, and Algorand are account-based.
For most developers, it is natural to interpret contracts as objects with a state
that can be accessed and modified by methods. Account-based blockchains
directly enable this programming style, which explains their dominance as smart
contract platforms. Instead, in the UTXO-based model, the global state of the
blockchain is represented by the set of unspent transaction outputs. Each output
stores crypto assets and a state, and it specifies a redeem script which sets the
conditions under which the output can be spent. A transaction can spend one
or more outputs, specifying them as its inputs: this effectively removes these
outputs from the global state, and creates new ones. These new outputs can
update the state of the spent ones and redistribute the assets according to the
redeem script. Despite programming UTXO-based contracts requires a change
of mind from the common object-oriented style, the UTXO model has a series
of advantages over the account-based model.

A first problem of Ethereum-style contracts is that their execution is not
easily parallelizable over multi-core validators. Two transactions could be exe-
cuted concurrently when their execution does not access the same part of the
state. In Ethereum, validators have no efficient way to detect when two trans-
actions are concurrent, because, in general, determining the part of the state
accessed by transactions requires to execute it. In the UTXO-based model in-
stead it is straightforward to detect when two transactions are concurrent: this
just requires to check whether they spend disjoint outputs.

Another problem of the account-based model is that a user sending a trans-
action to the mempool can not precisely predict the state in which it will be
executed. This has several negative consequences, such as the unpredictabil-
ity of transaction fees and susceptibility to Maximal Extractable Value (MEV)
attacks. In Ethereum-style contracts, a valid transaction must carry a gas fee
which depends on the instructions needed to execute it. The actual number,
type and cost of these instructions heavily depends on the initial state. Besides

1



forcing users to over-approximate the amount of gas needed, this also enables at-
tacks in which an adversary front-runs a user transaction, so that it is executed
in a state where the provided gas is insufficient. This makes the user pay the gas
fee even if the transaction is rejected and does not update the state according to
the user intentions. With MEV attacks instead, malicious validators manage to
have an improper gain by reordering the users’ transactions in the mempool and
interleaving them with their own. Such attacks are very common in practice
targeting in particular DeFi contracts, for an estimated value exceeding USD
700 million [1].

Unlike in the account-based model, in the UTXO-based model when a user
sends a transaction T to the mempool, they know exactly the state in which
it will be executed: indeed, this state is completely determined by T’s inputs.
Therefore, if an adversary front-runs T with another transactions T′, the effect
is that T will become invalid, preventing it to be appended to the blockchain,
since some of its inputs are spent by T′. This avoids both issues described
before, i.e. MEV attacks and unpredictability of fees. If the user still desires to
perform the action in the new state, they must resend T, updating its inputs
(and therefore, specifying the new state where the action is executed).

Currently, the two main blockchain platforms following the UTXO-based
model are Bitcoin and Cardano. These two platforms have substantially dif-
ferent scripting languages, which results in smart contracts with different ex-
pressiveness. On the one hand, Bitcoin has a minimalistic scripting language,
featuring only basic arithmetic and logical operations, conditionals, hashes, and
(limited) signature verification [4]. While some interesting classes of smart con-
tracts are expressible in Bitcoin [3], contracts requiring unbounded computa-
tional steps, or transfers of tokens different than the BTC, cannot be expressed.
Neglecting the lack of expressiveness, this design choice has some positive as-
pects: besides limiting the attack surface and simplifying the overall design (e.g.,
no gas mechanism is needed), it makes contracts amenable to formal verification.
On the other side of the spectrum, Cardano’s scripting language is an untyped
lambda-calculus [8], which makes its contracts Turing-complete. This increase
in expressiveness comes at a cost, in that the static verification of general script
properties is undecidable. A relevant research question is then whether one can
find a balance between the two approaches, i.e. a contract model which is ex-
pressive enough for real-world use cases, without requiring a Turing-complete
script language.

In this talk we address this question, by proposing an UTXO-based con-
tract model which allows for expressive (Turing-complete) contracts, by only
requiring a minimal (non Turing-complete) scripting language. The key idea
is to scatter the execution of complex contract actions across multiple transac-
tions. Even though each of these transactions only executes a simple (loop-free)
script, the overall chain of transactions can encompass complex (possibly, re-
cursive) behaviours. In this way, our model can support real-world use cases,
like e.g. auctions and Automated Market Makers.

The talk will touch the following points:

2



• We sketch a stack of three languages. The top layer is a high-level con-
tract language inspired by Solidity, the main language of Ethereum. The
intermediate layer is a process calculus with basic primitives to manage
crypto-assets. The bottom layer is an UTXO-based model with Bitcoin-
like scripts extended with covenants [5–7].

• We discuss how to compile the high-level language into our intermediate
language.

• We overview a secure compiler from the intermediate language to our
UTXO language. Technically, the security of the compiler is established
through a computational soundness theorem [2]: namely, even in the pres-
ence of adversaries, with overwhelming probability there is a step-by-step
correspondence between the execution of an intermediate-level contract
and that of the low-level contract resulting from its compilation.

References

[1] MEV-explore: MEV over time, March 2023. explore.flashbots.net.

[2] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptogra-
phy (the computational soundness of formal encryption). J. Cryptology,
20(3):395, 2007.

[3] Nicola Atzei, Massimo Bartoletti, Stefano Lande, Nobuko Yoshida, and
Roberto Zunino. Developing secure Bitcoin contracts with BitML. In ES-
EC/FSE, 2019.

[4] Nicola Atzei, Massimo Bartoletti, Stefano Lande, and Roberto Zunino. A
formal model of Bitcoin transactions. In Financial Cryptography and Data
Security, volume 10957 of LNCS, pages 541–560. Springer, 2018.

[5] Massimo Bartoletti, Stefano Lande, and Roberto Zunino. Bitcoin covenants
unchained. In ISoLA, volume 12478 of LNCS, pages 25–42. Springer, 2020.

[6] Malte Möser, Ittay Eyal, and Emin Gün Sirer. Bitcoin covenants. In Fi-
nancial Cryptography Workshops, volume 9604 of LNCS, pages 126–141.
Springer, 2016.

[7] Russell O’Connor and Marta Piekarska. Enhancing Bitcoin transactions with
covenants. In Financial Cryptography Workshops, volume 10323 of LNCS.
Springer, 2017.

[8] Plutus Team. Formal specification of the plutuscore language, 2022.

3

explore.flashbots.net

