
Ensuring Correctness of Smart Contracts
with Constrained Horn Clauses

Fabio Fioravanti1 and Giulia Matricardi1,2

1 DEc,University ‘G. d’Annunzio’, Chieti-Pescara, Italy
fabio.fioravanti@unich.it, giulia.matricardi001@studenti.unich.it

2 Dottorato di Interesse Nazionale in Blockchain e DLT, University of Camerino, Italy
giulia.matricardi@studenti.unicam.it

Smart contacts are computer programs that specify and impose the execution
of contracts and agreements by automatically performing predetermined actions,
including payments, upon the occurrence of certain events or conditions. Any
bugs or errors in the smart contracts code will become permanent once published
and could lead to huge economic losses (e.g. DAO attack). Ensuring correctness
of smart contracts is therefore of fundamental importance.

Many recent program analysis and verification methods [1,2] use Constrained
Horn Clauses (CHCs) as a language for specifying (i) the semantics of programs,
that can be written in a variety of programming languages, including imperative,
functional, object-oriented, and concurrent ones, and (ii) program properties, in-
cluding safety, termination, and program equivalence. CHCs are a fragment of
First-Order Logic with the same syntax and semantics of Constraint Logic Pro-
grams (CLP) [3] but they are not intended to be directly executed as programs.
Once the verification problem has been translated to CHCs the main interest
is in checking their satisfiability (respectively, unsatisfiability) that guarantees
that the property of interest is valid (resp. invalid) for the considered program.

Different CHC solvers have been developed for checking the satisfiability of
CHCs such as, Eldarica3, Golem4, Spacer/Z35, and VeriMAP6 that apply differ-
ent decision procedures, possibly combining predicate abstraction, Counterex-
ample Guided Abstraction Refinement (CEGAR), Property Directed Reacha-
bility (PDR), program transformation and abstract interpretation. Well-known
program verification tools that are based on CHCs include SeaHorn7 for LLVM
languages, JayHorn8 for Java, and RustHorn9 for Rust. A workshop on Horn
Clauses for Verification and Synthesis (HCVS)10 and a competition of CHC
solvers (CHC-COMP)11 are held every year, since 2014 and 2018, respectively.

3 https://github.com/uuverifiers/eldarica
4 https://github.com/usi-verification-and-security/golem
5 https://github.com/Z3Prover/z3/
6 https://fmlab.unich.it/verimapwebgui/
7 https://seahorn.github.io
8 https://jayhorn.github.io/jayhorn/
9 https://github.com/hopv/rust-horn

10 https://www.sci.unich.it/hcvs23/
11 https://chc-comp.github.io/

https://github.com/uuverifiers/eldarica
https://github.com/usi-verification-and-security/golem
https://github.com/Z3Prover/z3/
https://fmlab.unich.it/verimapwebgui/
https://seahorn.github.io
https://jayhorn.github.io/jayhorn/
https://github.com/hopv/rust-horn
https://www.sci.unich.it/hcvs23/
https://chc-comp.github.io/


Ethereum is the most popular platform for storing and executing smart con-
tracts, overall managing billions of dollars. Several tools for analysis and for-
mal verification of Ethereum smart contracts are based on Horn clauses and
combine abstraction, symbolic execution and partial evaluation, including Se-
curify12, eThor13, HoRStify14 and SmartACE15. Recently, the official Solidity
compiler developed by the Ethereum Foundation has been equipped with a sym-
bolic model checker that uses SMT and CHC solvers to check properties of smart
contracts annotated using require and assert statements16.

In order to ease the proof of (un)satisfiability, some semantics-preserving
CHC transformation rules can be applied to perform a sequence of small modifi-
cations at clause level, which may propagate constraints by symbolic evaluation,
uncover relations among variables, eliminate redundant variables or clauses, con-
jecture and confirm the existence of inductive invariants. The result of the trans-
formation may be a radical restructuring of the whole set of clauses by changing
their pattern of recursion. These CHC transformations, guided by suitable strate-
gies, have been used, for instance,
(i) to generate the CHCs corresponding to a given verification problem by spe-
cializing different interpreters of a programming language,
(ii) to verify safety properties (unreachability of bad states) and relational prop-
erties (such as equivalence, injectivity, monotonicy, functional dependence, non-
interference) of imperative programs over integers and arrays of integers,
(iii) to efficiently generate complex test data structures, e.g. AVL trees, in the
property-based testing setting,
(iv) to verify properties of programs over Algebraic Data Types (ADT) (such as
lists, trees, heaps, queues) improving the effectiveness of state-of-the-art solvers.

We propose to investigate the development of techniques based on CHC
transformation for ensuring correctness of smart contracts including, but not
limited to, those written for the Ethereum blockchain.

References

1. E. De Angelis, F. Fioravanti, J. P. Gallagher, M. V. Hermenegildo, A. Pettorossi, and
M. Proietti. Analysis and transformation of constrained Horn clauses for program
verification. Theory and Practice of Logic Programming, 22(6):974–1042, 2022.

2. A. Gurfinkel. Program verification with constrained horn clauses (invited paper).
In S. Shoham and Y. Vizel, editors, Computer Aided Verification - 34th Interna-
tional Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part
I, volume 13371 of Lecture Notes in Computer Science, pages 19–29. Springer, 2022.

3. J. Jaffar and M. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19/20:503–581, 1994.

12 https://github.com/eth-sri/securify2
13 https://secpriv.wien/ethor/
14 https://www.horstify.org/
15 https://github.com/contract-ace/smartace
16 https://docs.soliditylang.org/en/latest/smtchecker.html

https://github.com/eth-sri/securify2
https://secpriv.wien/ethor/
https://www.horstify.org/
https://github.com/contract-ace/smartace
https://docs.soliditylang.org/en/latest/smtchecker.html

	Ensuring Correctness of Smart Contracts with Constrained Horn Clauses

