Clearing Fuzzy Signatures: a Proof of Work Blockchain
Protocol for Biometric Identification

Paolo Santini, Giulia Rafaiani, Massimo Battaglioni, Marco Baldi, and Franco Chiaraluce

Universita Politecnica delle Marche, Ancona, Italy
{p. santini, g.rafaiani, m.battaglioni, m.baldi, f. chiaraluce}@univpm. it

In a conventional Proof of Knowledge identification scheme, a user demonstrates to possess some
private information (say, a secret key) by replying to the random challenges of a verifier, which
involve public data (say, the corresponding public key). A simple paradigm to obtain such a protocol
consists in using digital signatures: the private and public data are the signing and verification keys,
respectively. Every time a user wants to be identified, he is challenged with a random message, which
he must sign. Identification is successful iff the signature is verified by the associated verification key.

In some contexts, signing keys may be fuzzy, i.e., associated with a statistical distribution so that
distinct samples are, with high probability, slightly different. The most natural example of fuzzy
sources is that of biometric data, e.g., fingerprints. Signing with biometric-derived keys would indeed
produce signatures that, with very high probability, cannot be verified with the originally enrolled
public key.

To reconcile with the public key, one may use techniques such as fuzzy-commitment schemes [1,

] and fuzzy signatures with linear sketch [3, 4]. However, they all come with some overhead, in the
form of additional public data and/or modifications to standard signature algorithms.

Our contribution. We describe a novel Proof of Work (PoW) blockchain protocol which is specifically
tailored to identify users holding a fuzzy secret key distribution. We exploit the fact that fuzzy keys
produce signatures that are blurred, i.e., close to the signature that would be verified by the user’s
public key. To clear the signature, i.e., to remove the noise due to the key fuzziness, the miners go
through a brute force search. The key point is in the fact that the cost of this process, which would
be too high for a single user, gets distributed among all the miners. In our protocol, transactions are
signed with fuzzy keys and verification implies users identification. In other words, the outcome of
the consensus protocol is not only the blockchain status update, but also the identification of a user.

The resulting protocol is highly customizable, since features such as average block size and average
creation time can be easily customized. With a modification in the clearing process, the protocol is
guaranteed to achieve Byzantine Fault Tolerance (BFT); the only drawback is in that each clearing
attempts becomes moderately slower. This trade-off is ruled by an integer parameter X: the average
block creation time increases as O(X), while the BFT is ﬁ In this abstract we give a simple

description of the protocol, by considering the Elliptic Curve Digital Signature Algorithm (ECDSA).

A prototype of the proposed scheme

We briefly describe the archetype version of the proposed protocol, based on the ECDSA signature
scheme. Let us consider N users {f1,{{2,--- ,{{ n. As a structural assumption, we consider that each
user ¢f; is associated with a distribution (e.g., depending on some user’s biometric data) whose mean
Z; is uniformly distributed over Z,, (here, n refers to the additive order of G, the generator of the
elliptic curve). To model the fuzziness in a simple way, we assume each distribution is uniform in
[Z; — w; Z; + w]. In the (initial) enrollment phase:

- a secret key z; for user 7f; is sampled according to his distribution;
- the public key pk; := @; = x;G is computed.

The users’ public keys are collected in a public file & = {pky, pky, - - - , pky }. When user 7f; wants to
be identified:

1. he sets the raw transaction as m, where m contains all useful data that make the transaction
unique (e.g., the current timestamp and the hash of the latest block);

2. he samples a fresh signing key z%;

3. he computes s’ as the signature of m, using /.

The pair (s’,m) is then delivered to the network, which starts mining the transaction. It can be easily
proved that, if a} = z; + e, where e is such that |e| < 2w, then the signature s’ would be validated
by the public key @) = ;G + eG = Q; + eG. Notice that Q) can be recovered from s'. Then, each
miner starts the clearing process, which we summarize as follows:

1. randomly pick a candidate € for e and compute @z = Q. — G,
2. determine whether @Z € &Z: if so, produce the transaction as T' = (m7 s, €, @Z), otherwise restart

from step 1.

Upon the reception of T', each blockchain node checks that i) T' is properly constructed by checking
that m correctly references the latest block and the timestamp is trustworthy, ii) |€] < 2w, and iii)
Q) — G € &Z. If the above conditions are met, then T is included in the blockchain and the miner
gets rewarded.

Security: cryptographic primitives

In the described context, given a public key @, the problem of forging a signature becomes that of
finding a signature s* that is verified by some Q* within distance 2w from Q. It can be shown that
this problem is essentially as hard as forging a (non fuzzy) ECDSA signature'.

Consensus protocol: Byzantine Fault Tolerance (BFT) and time complexity

As any PoW-based blockchain, the considered paradigm is secure if a sufficiently large portion of
miners is honest. In the mining process, candidates for e will be sampled from a cryptographically
secure PRNG. This forces miners to go through an exhaustive search, in order to find a valid candidate
for e. When the computational cost of the PRNG is not too small, say, it is X - tgcpsa (i-e., X times
the cost of computing an ECDSA signature), the protocol achieves a BFT tolerance of ﬁ

The cost of the mining process depends on w: when there are M online miners, the average time

to mine a transaction is in
4 1
0 <min{w]\/}_; 1} (X +1+ logQ(N))> .

Since every transaction in the block needs to be verified, the average block size can be tuned, according
to the values of w, N and M. Also, a traditional PoW step can be added, in case some blocks contain
very few transactions and, as such, are too easy to be mined.

References

[1] M. Baldi et al. “On Fuzzy Syndrome Hashing with LDPC Coding”. In: Proceedings of the 4th Inter-
national Symposium on Applied Sciences in Biomedical and Communication Technologies. ISABEL ’11.
Barcelona, Spain: Association for Computing Machinery, 2011.

[2] A.Juels and M. Wattenberg. “A Fuzzy Commitment Scheme”. In: Proceedings of the 6th ACM Conference
on Computer and Communications Security. CCS ’99. Kent Ridge Digital Labs, Singapore: Association
for Computing Machinery, 1999, pp. 28-36. 1SBN: 1581131488.

[3] S.Katsumata et al. “Revisiting Fuzzy Signatures: Towards a More Risk-Free Cryptographic Authentica-
tion System based on Biometrics”. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security. 2021, pp. 2046—2065.

[4] K. Takahashi et al. “Signature schemes with a fuzzy private key”. In: International Journal of Information
Security 18.5 (2019), pp. 581-617.

! Namely, an oracle solving the fuzzy ECDSA forging problem can be used to forge a non-fuzzy signature,
using only O(w) queries.

